

Pilot Program: Developing Reagents, Protocols, and Tools to Enable Translation of Discoveries from Large Scale Cancer Genomics Programs (TCGA, TARGET, Others)

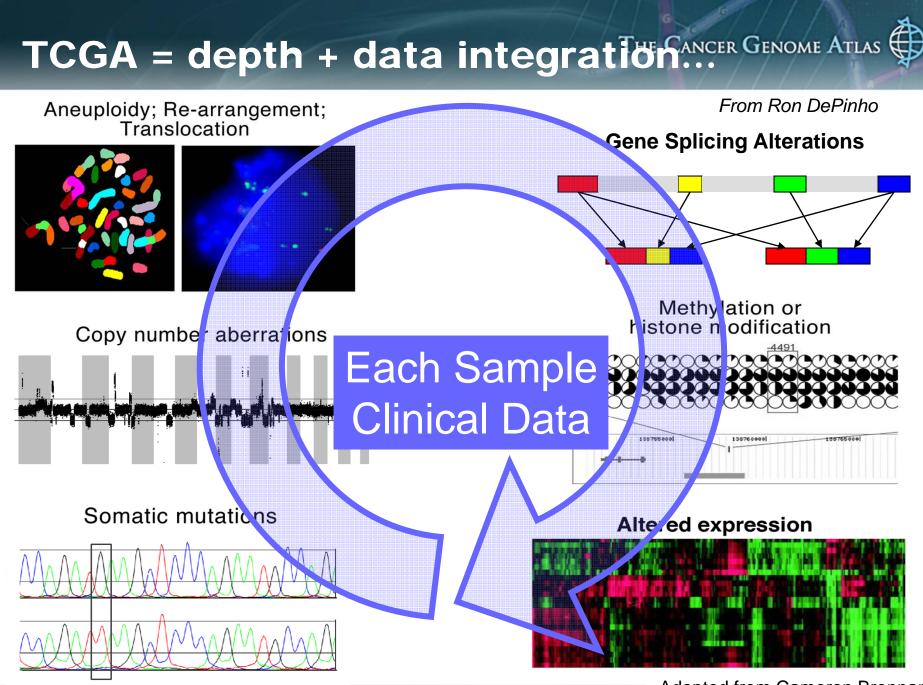
> Daniela S. Gerhard, Ph.D. Office of Cancer Genomics

Henry Rodriguez, Ph.D., MBA Clinical Proteomic Technologies for Cancer

> Anna D. Barker, Ph.D. Deputy Director National Cancer Institute

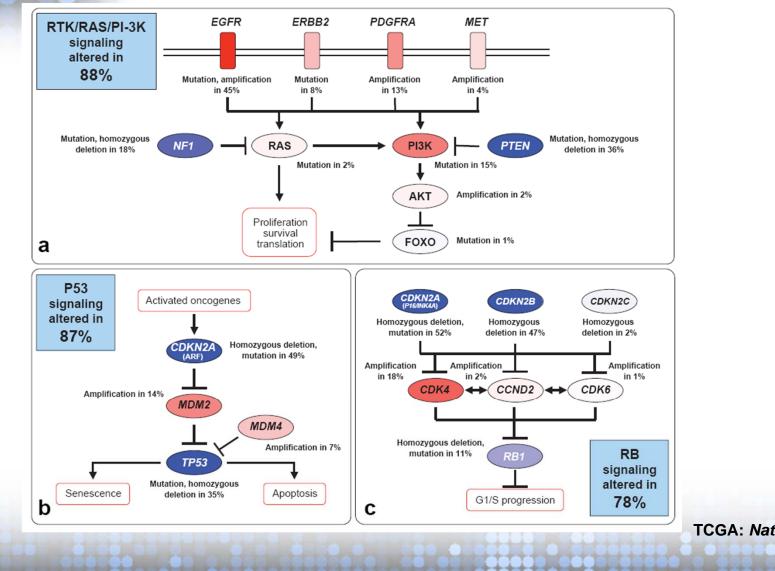
NCI Board of Scientific Advisors June 22, 2009

Background for the Pilot


 Large scale genome characterization/sequencing programs are well under way (TCGA, TARGET, other whole genome sequencing programs) – creating large complex data sets for mining by the communities

- The programs are already identifying new genomic alterations but perhaps of more importance – are providing unprecedented opportunities to analyze the multi-dimensional data for new potential cancer "signatures/targets" While some high-quality reagents exist for highly studied targets – the next era of cancer discovery and development will depend in large measure on the success of functional studies
- Looking ahead, the numbers of potential "targets" will be large but reagents and tools will be limited, costly and difficult to access for many
- There is a critical need for highly-characterized reagents, protocols and other tools to support cancer researchers as they move to functionalize biologically and clinically important genomic alterations

Overall Goals of the Pilot


- To develop a community-based process that will prioritize "signature/target" candidates (targets) from large-scale genomic programs
- To enable and accelerate functional studies through the development of broadly available highly-characterized reagents, protocols and tools to the selected targets
- To regularly evaluate the pilot determine a longer term model for the future

Adopted from Cameron Brennan

GBM Pathways (Characterization/Sequencing Continuing)

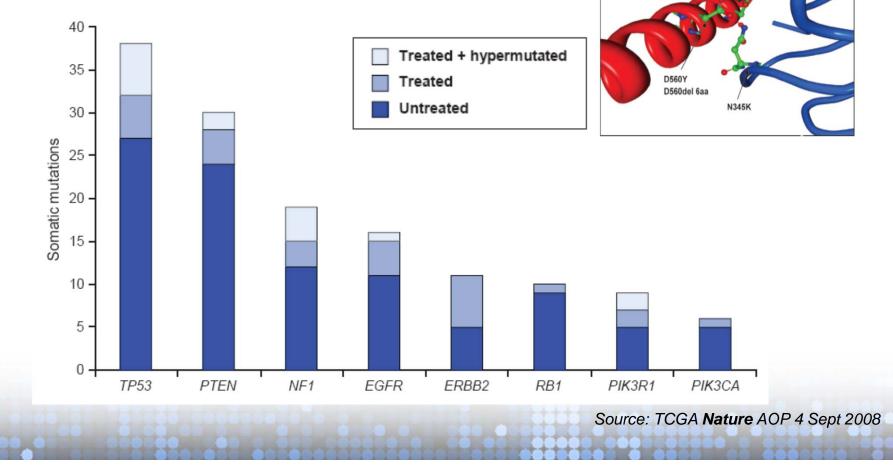
TCGA: Nature 2008

Frequency of Mutations in Some Genes – Likely Specific for GBM Subtypes

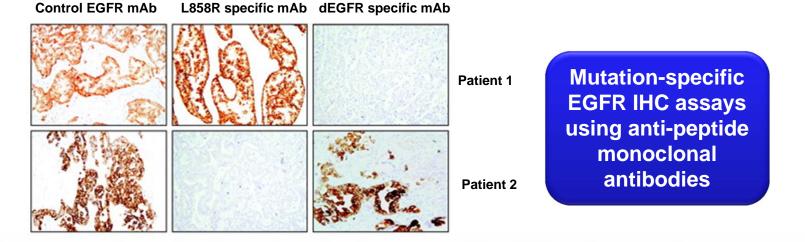
Table 3a. Distribution of frequently-mutated genes across GBM subtypes.

Gene	Proneural n=37	Neural n=19	Classical n=22	Mesenchymal n=38	Total # Mut	χ²	p-value
TP53	20	4	0	12	36	14.1	0.003 🗲
PTEN	6	4	5	12	27	2.5	0.47
NF1	2	3	1	14	20	13.3	0.004 🗲
EGFR	6	5	7	2	20	6.8	0.078
PIK3R1	7	2	1	0	10	8.5	0.035
RB1	1	1	0	5	7	5.7	0.127
ERBB2	2	3	1	1	7	3.9	0.272
EGFRvIII	1	0	5	1	7	10.8	0.013
PIK3CA	3	1	1	1	6	1.1	0.789
PDGFRA	4	0	0	0	4	8.5	0.037

Relevant New Discoveries in Pediatric Cancers -TARGET

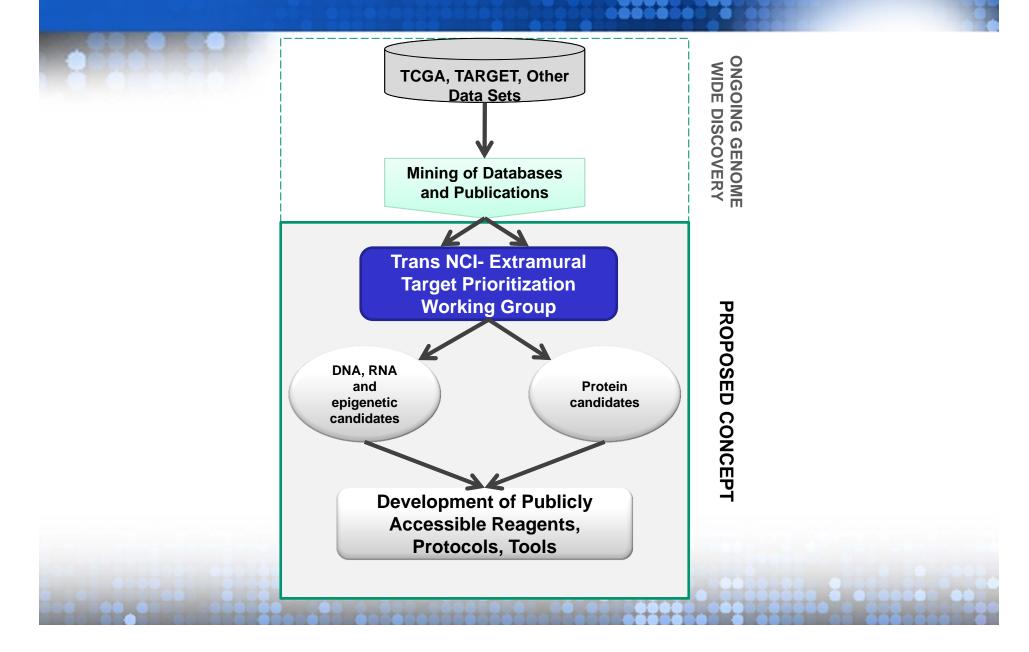

JAK mutations in "BCR-ABL1-like" ALL (TARGET)

- High risk childhood ALL 67% cases have lesions in B-cell development pathway genes; IKZF1 (IKAROS) alterations in ~ 30% of cases
 - JAK2 (n=16): 10 R683G; 3 non-R683G pseudokinase domain; 3 kinase domain
 - JAK1 (n=3): 3 pseudokinase domain
 - JAK3 (n=1): uncertain functional consequences


Genomic Approaches/Reagents Exist for Historical Targets – New Insights Require New Reagents

- *PIK3R1* had anecdotal reports in the literature
- Cluster of mutations/indels in contact amino acids known to be important for interaction with PIK3CA

Need to Expand Successful Mutation-Specific Antibody Reagent Models


- 85% to 90% of NSCLC-associated EGFR mutations are:
 - In-frame deletions in exon 19 (E746_A750del) or point mutation in exon 21 (L858R)
- Monoclonal antibodies against synthetic peptides matching above aberrations recently developed and shown effective in IHC assays
- Such unique reagents are critical as patients with similar mutations shown responsive to EGFR inhibitors including gefitinib and erlotinib.

- NSCLC patient samples with unknown genotype were stained with above mAbs.
- DNA sequence analysis confirmed the presence of the L858R mutation in Patient 1 and Patient 2

Yu et al, Clin. Cancer Res. 2009; 15 (9) 3023- 3028

Overall Concept Design

Vision for Target Selection Process

- RFI to seek candidates from the broader scientific community - ongoing, iterative process -

- NCI-Extramural Target Prioritization Working Group (Representatives from the extramural community together with NCI division/program leadership) receive candidates along with supporting evidence – ensure synergy avoid duplication (Group to define process)
- Prioritized candidates vetted for functional evidence also vetted in terms of feasibility for reagent production (academic and private laboratories)
- Final selection based on supporting technical evidence, community need and feasibility
- Ongoing evaluation to evaluate process and future model (if feasible, high value and financially viable)

Reagent/Protocol/Tools Development for Genomic/Proteomic Targets – Target Dependent

- Genomics targets/signatures develop protocols to characterize specific/further define genomic targets (e.g., multiplex sequencing, digital mRNA profiling, etc.)
- Proteomic targets/signatures Develop and comprehensively characterize (western blotting, IHC, epitope maps) monoclonal antibodies (mAbs); develop mAbs against peptide and/or selected protein fragments to functionalize targets
- Make resources available on all relevant websites (TCGA, TARGET, CPTAC, Other Portals)

Value of Doing the Pilot Now

- With Nex-gen technologies, integrated multi-dimensional genomic data sets on large numbers of types (and subtypes) will drive large numbers of discoveries – defining and functionalizing potential targets will become rate limiting
- The pilot program will leverage knowledge from individuals and groups to enable the development of reagents, protocols and tools for broader community – may be prerequisite for effective translation
- Targets can be identified *throughout* pilot "just-in-time" approach could speed discovery and development
- The pilot will support collaborative early scientific pipelines to drive new target validation and development of more effective interventions
- We can evaluate the process before we are buried under data

RFP Mechanism Chosen for the Pilot

- To ensure meeting milestones and deliverables
- Facilitate making of reagents and accompanying data freely available to the scientific community
- Best approach to include interested and qualified experts form both academic and private sectors
- Can be re-directed if needed

How Might this Develop – Future Possibilities

- Possibility 1 for a number of reasons (information sharing is limited; targets are easy everyone makes everything they need; targets are really difficult to qualify and only a few people can proceed to leverage the data; or it's too expensive, etc. we decide not to continue the pilot program
- Possibility 2 we decide that it is needed and of high value and we want to optimize it and scale it up – several scenarios are possible:
 - We scale it up at government expense (likely not a popular choice)
 - We scale it up using a cost recovery model
 - We develop the concept as a public-private partnership (could also be cost recovery)

With these possibilities in mind – the pilot must pay close attention to feasibility, time required, cost and ease of access and use by all of the relevant communities

Proposed Timeline & Budget

Initiative	Est. # Awards	FY10	FY11	\$
RFP1: Genomics	2 - 4	\$1.25 M	\$1.25 M	2.5 million
RFP2:	2 - 3	\$1.25 M	\$1.25 M	2.5 million
Proteomics				
Total:		\$2.5 M	\$2.5 M	5 million

