Modeling molecular diversity in cancer

Integrating “omics”, mathematical models and functional cancer biology

Lawrence Berkeley National Laboratory
University of California, San Francisco
University of California, Berkeley
SRI International
Netherlands Cancer Institute
MD Anderson Cancer Center
Modeling molecular diversity in cancer

Identifying and understanding “omic” determinants of therapeutic response in breast cancer

• A collection of cell lines as a model of molecular and biological diversity
• Three integrative biology examples
 ➢ Associating pathways and markers with response
 ➢ Modeling MEK signaling diversity using pathway logic
 ➢ Bayesian network models of AKT signaling
Modeling molecular diversity in cancer

Identifying and understanding “omic” determinants of therapeutic response in breast cancer

• A collection of cell lines as a model of molecular and biological diversity

• Three integrative biology examples
 ➢ Associating markers with response
 ➢ Modeling MEK signaling diversity using pathway logic
 ➢ Bayesian network models of AKT signaling
Model requirements

Identifying and understanding “omic” determinants of therapeutic response

• The molecular abnormalities that influence drug response in primary tumors must be functioning in the model
• The panel must have sufficient molecular diversity so that statistical analyses will have the power to identify molecular features associated with response
Cell lines as models of primary breast tumors

A collection of 50 cell lines retain important transcriptional and genomic features of primary tumors

Expression

Copy number

Frequency

Genome location

Neve et al, Cancer Cell 2006
Chin et al, Cancer Cell, 2006
Modeling molecular diversity in cancer

Integrating “omics”, mathematical models and functional cancer biology

- A collection of cell lines as a model of molecular and biological diversity
- Three integrative biology examples
 - Associating markers with response
 - Modeling MEK signaling diversity using pathway logic
 - Bayesian network models of AKT signaling
Associating molecular markers with response to lapatinib

Prediction: Molecular markers and networks associated with sensitivity and resistance will predict clinical response.
Test: Cell line markers predict response in HER2 positive patients

EGF30001: A randomized, Phase III study of Paclitaxel + Lapatinib vs. Paclitaxel + Placebo
HER2, GRB7, CRK, ACOT9, LJ31079, DDX5

GSK-LBNL collaboration
Modeling molecular diversity in cancer

Identifying and understanding “omic” determinants of therapeutic response in breast cancer

• A collection of cell lines as a model of molecular and biological diversity

• Three integrative biology examples
 ➢ Associating markers with response
 ➢ Modeling MEK signaling diversity using pathway logic
 ➢ Bayesian network models of AKT signaling
Hierarchical analysis of Pathway Logic states and rules

Baseline levels populate PL model states
Rules define predicted pathway activity

Protein abundances + Transcript levels

Curated network model

Heiser, Spellman, Talcott, Knapp, Lauderote
Example network of one cell line
Hierarchical analysis of network features

Prediction: PAK1 is required for network activation of MEK/ERK cascade in luminal cell lines.
Test: PAK1⁺ luminal cell lines are more sensitive to MEK inhibitors.
Modeling molecular diversity in cancer

Identifying and understanding “omic” determinants of therapeutic response in breast cancer

• A collection of cell lines as a model of molecular and biological diversity

• Three integrative biology examples
 ➢ Associating pathways and markers with response
 ➢ Modeling MEK signaling diversity using pathway logic
 ➢ Bayesian network models of AKT signaling
Therapeutic agents show strong luminal subtype specificity

Kuo, Guan, Hu, Bayani 2007
AKT pathway inhibitors show strong luminal subtype specificity.
Bayesian network analysis reveals AKT dependent signaling in luminal lines

Prediction: PI3-kinase pathway mutations will occur preferentially in luminal subtype cell lines

Mukherjee, Speed, Neve, et al., 2007
Test: AKT-inhibitor responsive cell lines carry PI3-kinase pathway mutations

12/13 AKT pathway mutations in primary tumors are in the luminal subtype

Kuo, Neve, Spellman et al., 2007
Modeling molecular diversity in cancer

Integrating “omics”, mathematical models and functional cancer biology

- A collection of cell lines as a model of molecular and biological diversity
- Three integrative biology examples
 - Associating pathways and markers with response
 - Modeling MEK signaling diversity using pathway logic
 - Bayesian network models of AKT signaling
Collaborating Laboratories & Support

Engineering
Earl Correll
Bob Nordmeyer
Jian Jin
Damir Sudar

Surgery/Pathology
Britt Marie Ljung
Fred Waldman
Shanaz Dairkee
Laura Esserman

Exp. Therapeutics
Maria Koehler
Mike Press
Michael Arbushites
Tona Gilmer
Barbara Weber
Richard Wooster

Cell/Genome Biology
Rich Neve
Mina Bissell
Philippe Gascard
Frank McCormick
Mary Helen
Barcellos Hoff
Rene Bernards
Gordon Mills

Comp. Biol
Paul Spellman
Laura Heiser
Keith Lauderote
Merrill Knapp
Carolyn Talcott
Sach Mukherjee
Terry Speed
Jane Fridlyand
Bahram Parvin
Lisa Williams
Steve Ashton

ICBP, SPORE, GSK, Affymetrix, Genentech, Panomics, Cellgate, Cell Biosciences, Komen, Avon, EGF30001 Trial Investigators