<table>
<thead>
<tr>
<th>Institution</th>
<th>Names</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHOP/UPenn</td>
<td>John Maris, MD Edward Attiyeh, MD Michael Hogarty, MD Yael Mosse, MD Sharon Diskin, PhD</td>
</tr>
<tr>
<td>COG</td>
<td>Wendy London, PhD (Statistics) Julie Gastier-Foster, PhD (Pathology)</td>
</tr>
<tr>
<td>CHLA/USC</td>
<td>Robert Seeger, MD Shahab Asgharzadeh, MD Richard Sposto, PhD</td>
</tr>
<tr>
<td>NCI</td>
<td>Javed Khan, MD (Oncogenomics) Daniela Gerhard, PhD (OCG) Jinhui Zhang, PhD (CCR) Subha Madhavan, PhD MS (caBIG) Jim Jacobson, PhD (SPECS) Malcolm Smith, MD PhD (CTEP)</td>
</tr>
</tbody>
</table>
Neurblastoma-TARGET: Motivation

• Important pediatric problem
 – 15% of childhood cancer mortality
 – 50% of cases metastatic and highly malignant at diagnosis
 – Cure rates stagnant over last two decades
 • Despite dramatic intensification of treatment intensity
 • Survivors with significant morbidity

• Neuroblastoma genomics highly predictive of clinical course
 – Recurrent amplification (MYCN) and deletions (1p36 and 11q23) used by COG to stratify therapy
 – But….no bona-fide and tractable molecular targets known
NBL-TARGET Workflow

Year 1

COG SDC
Sample Selection

Biopathology Center
Sample QC
Nucleic Acids Prep

416 High-risk NBLs
78 Low-risk NBLs

CHOP
DNA Copy Number
Illumina SNP

CHLA
RNA Copy Number
Affymetrix HuEx

NCI
Data Integration
Data Coordination
Data Analysis

Target Discovery
Resequencing 110 genes
188 high-risk NBLs

Biomarker Discovery
Molecular Classification
Outcome associations

Discovery and validation sets from most recent
COG Phase 3 trials

CHOP/CHLA/NCI Labs
Validation and Mechanism

Clinical Application
Using genomics to predict patient outcome

A model

1. Specific Trisomies
2. Numerical Aberrations
3. Favorable Signature
4. Unfavorable Signature

Risk for death

DNA copy number

Segmental Aberrations

RNA copy number
Using genomics to predict patient outcome

A model with supporting data

<table>
<thead>
<tr>
<th>Chr.</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>p = 0.005</td>
</tr>
<tr>
<td>2</td>
<td>p = 0.009</td>
</tr>
<tr>
<td>5</td>
<td>p = 0.005</td>
</tr>
<tr>
<td>7</td>
<td>p = 0.040</td>
</tr>
<tr>
<td>1, 2, and 5</td>
<td>p = 0.002</td>
</tr>
</tbody>
</table>

Risk for death

Specific Trisomies

1

DNA copy number

RNA copy number

Stage 1 or 2; cured

Stage 4, MYCN normal

Stage 4, MYCN amplified

Unfavorable Signature

Favorable Signature

Risk for death
Discovering mutated targets
Gene resequencing selection criteria

- Genes within regions of copy number aberration
 - Homozygous deletion
 - Absolute loss and/or LOH
 - Relative gain (above the cell’s DNA index)
 - Amplification
- Genes with differential gene expression
- Genes supported by the literature
- Genes with known mutations in other cancers (COSMIC database)
- Most candidates supported by two or more criteria
NBL-TARGET Resequeencing Summary

- 188 samples
- 117 genes and microRNA sequenced
 - 1,066 exons
 - 1,591 amplicons
 - 1.11 Mb (0.037% of genome)
 - 679,862 traces generated so far

<table>
<thead>
<tr>
<th>Gene</th>
<th>missense</th>
<th>splice</th>
<th>nonsense</th>
<th>frameshift</th>
<th>proteinDel</th>
<th>proteinIns</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOTCH1</td>
<td>71</td>
<td>3</td>
<td>4</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>45.21%</td>
</tr>
<tr>
<td>ALK</td>
<td>18</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>10.64%</td>
</tr>
<tr>
<td>CASZ1</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10.11%</td>
</tr>
<tr>
<td>KIF2B</td>
<td>13</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>7.45%</td>
</tr>
<tr>
<td>KIF1B</td>
<td>11</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>7.45%</td>
</tr>
<tr>
<td>NTRK3</td>
<td>12</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6.91%</td>
</tr>
<tr>
<td>GRM5</td>
<td>12</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6.91%</td>
</tr>
<tr>
<td>GDF7</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>6.38%</td>
</tr>
<tr>
<td>CHD5</td>
<td>9</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5.85%</td>
</tr>
<tr>
<td>PTPRD</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>5.32%</td>
</tr>
<tr>
<td>MAD1L1</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>5.32%</td>
</tr>
<tr>
<td>TP73</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>4.79%</td>
</tr>
<tr>
<td>NTRK1</td>
<td>7</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>4.79%</td>
</tr>
<tr>
<td>GPR153</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>4.79%</td>
</tr>
<tr>
<td>CAMTA1</td>
<td>6</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>4.79%</td>
</tr>
<tr>
<td>MMP17</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>4.26%</td>
</tr>
<tr>
<td>FAM55D</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4.26%</td>
</tr>
<tr>
<td>PIWIL4</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>3.72%</td>
</tr>
<tr>
<td>P2RX7</td>
<td>6</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3.72%</td>
</tr>
</tbody>
</table>

Several genes (eg ALK) still with poor coverage
ALK is an oncogenic kinase in neuroblastoma

- Co-discovery of ALK as the familial neuroblastoma gene (Mosse, Nature 2008) and frequent somatic amplification and mutation (TARGET)
 - Amplification: 31/599 (5.2%)
 - Focal gain: 102/599 (17.0%)
 - Mutations in kinase domain: 43/552 (7.2%)
 - Mutations in extracellular domain: Present, frequency still be defined
Germline and Somatic ALK Kinase Region Mutations Fall in Regions Shown to be Major Targets of Cancer Mutations
ALK is a tractable target for pharmacologic inhibition

(but sensitivity depends on mutation type)

PF'066 Dose Response Curves

- NB1 (WT amplified)
- NB1643 (R1275Q)
- NBSD (F1174L)

% Growth inhibition with PF066 at 333 nM

- WT
- WT1275Q

% growth inhibited versus control

- WT
- F1174L
- R1275Q

NB1643 (R1275Q)

- NB1 (WT amplified)
- WT
- NBSD (F1174L)
Moving ALK inhibitors to the clinic
(Which drug, which mutations?)

Hepatotoxic in dogs

Kelly (F1174L): ALKi IC\textsubscript{50}

Adult Phase 1

- GSK085
- GSK765
- PF066
- GSK677
- Cep B
- Cep A
- GSK636

Vol (cm3)

- NB1643
 - R1275Q
 - (Most common mutation)

- NBSD
 - F1174L
 - (2nd most common mutation)

- NB-EBc1
 - WT
 - (but weak pALK)

- SKNAS
 - WT
 - (no pALK)
Getting around resistance mutations
ALK homology model with PF-02341066 bound

- Mutation NOT predicted to destabilize activation loop: No effect on PF-066 binding
- Highly conserved F; mutation predicted to destabilize hydrophobic pocket for PF-066 binding
Discovery, Validation and Implementation

Therapeutic Validation
- LMO1
- NOTCH1
- CASZ1
- KIF family
- Trk family
- others
- AURKA
 - AACR 2008

Discovery
- Germline
 - NBL-GWAS
 - R01-124709
- NBL-Hereditary
 - R01-078454, R01-140198
- Somatic
 - NBL-TARGET
 - U10-098543
 - R01-CA60104
 - R01-CA87847
 - NIH Intramural Program
- NBL-PPTP
 - N01-CM42216

Biomarker/Diagnostic Validation
- FLJ22536
 - NEJM 2008
- BARD1
 - Nat Gen 2009
- ALK
 - Nature 2008

Clinical Evaluation
- ALK Genetic Screening
 - CHOP
- ADVL0812 Phase 1/2
- ADVL0912 Phase 1/2
- DNA signature
 - ASCO 2007
- RNA signature
 - JNCI 2006; Genomics 2008
- COG and SIOPEN
 - eg COG ANBL0531

- ALK Genetic Screening
 - CHOP
- ADVL0812 Phase 1/2
- ADVL0912 Phase 1/2
- DNA signature
 - ASCO 2007
- RNA signature
 - JNCI 2006; Genomics 2008
- COG and SIOPEN
 - eg COG ANBL0531
NBL-TARGET

Future goals

• Functional validation and translation of current leads ongoing
 – Focus on ALK and NOTCH1

• Consider year 1 results “proof-of-concept” with < 0.04% of genome sequenced

• Uniquely poised for a full genome sequencing effort
 – Due to size of regional aberrations, this should be done with a comprehensive epigenome profiling
 • Pilot studies on Illumina Infinium platform complete

• NBL-TARGET team has demonstrated ability to quickly validate and translate discoveries
 – Rapidly improving neuroblastoma patient care and outcome is a realistic and achievable goal of the NBL-TARGET project