

COG

Stephen Hunger, MD

William Carroll, MD

Gregory Reaman, MD

Paul Bowman, MD

Mini Devidas, PhD

University of New Mexico

Cheryl Willman, MD

Richard Harvey, PhD

St. Jude Children's Research Hospital

Jim Downing, MD

Charles Mullighan, MD PhD

Mary Relling, PhD

<u>NCI</u>

Daniela Gerhard, PhD (OCG)

Jinghui Zhang, PhD (CBIIT)

Jim Jacobson, PhD (SPECS)

Malcolm Smith, MD PhD (CTEP)

Improved Survival in Childhood ALL CCG ALL Trials 1968-2000

2000-2005: 5-yr Survival 90%

The Remaining Challenge for ALL

- ALL continues to be a major cause of cancerrelated mortality in children and adolescents
- ALL treatment regimens have reached maximum tolerable intensity
- Only 1 new agent (imatinib) established to improve frontline therapy in past two decades
 - Relevant only for the 3% of pts with Ph+ ALL
- Further improvements in outcome will require novel therapeutic approaches

Childhood Cancer TARGET* Initiative: High Risk ALL Pilot Project

*Therapeutically Applicable Research to Generate Effective Treatments

- Discover candidate therapeutic targets by identifying genes that are consistently mutated in lymphoblasts from patients with HR-ALL
- "Team science" approach to COG P9906 samples
 - COG: Stephen Hunger (Chair), William Carroll, Mini Devidas, Greg Reaman, Paul Bowman
 - Labs: Charles Mullighan, Jim Downing, Mary Relling, Cheryl Willman
 - NCI Office of Cancer Genomics: Daniela Gerhard
 - NCI Cancer Diagnosis Program: James Jacobson
 - NCI Cancer Therapy Evaluation Program: Malcolm Smith
 - NCI caBIG: Jinghui Zhang

High Risk Childhood ALL TARGET Initiative: COG P9906 Study Population

- Trial conducted by POG/COG from 3/00-4/03
- Identical therapy for all pts
- High risk pt population:
 - Higher WBC & older age
 - ~50% DFS on earlier trials
- No pts with Ph+, hypodiploid, or induction failure
- Few pts with "favorable" biological subtypes:
 - − No trisomy 4/10 or TEL-AML1 unless CNS/testicular+
- 276 enrolled, 271 eligible

COG P9906: Improved Outcome vs. Historical Controls Bowman WP et al., Submitted

High Risk Childhood ALL TARGET Initiative: Approach

- Willman laboratory: Gene expression profiling
 - Affymetrix U133 Plus 2.0
- Mullighan + Downing laboratories: CNA and LOH
 - Affymetrix 500k + 100k SNP chip analyses on paired leukemia/germline specimens
- Use data to select genes for complete resequencing in leukemia samples
 - Sequence germline DNA for all identified alterations

High Risk Childhood ALL TARGET Initiative: Accomplishments I

- Supervised analysis of gene expression profiles identifies robust molecular risk classifiers that predict outcome and MRD
 - Kang, Willman et al, submitted
- Unsupervised analysis of gene expression profiles identifies intrinsic clusters linked to sentinel genetic lesions (known and previously unknown) and outcome
 - Harvey, Willman et al, submitted

Disease-Free Survival: Clusters H6/R6 and H8/R8

Harvey et al, Submitted

Association of H8/R8 with poor outcome confirmed in CCG 1961 cohort

High Risk Childhood ALL TARGET Initiative: Accomplishments II

- 67% cases have lesions in B-cell development pathway genes
- IKZF1 (IKAROS) alterations in ~ 30% of cases
 - Strong predictor of poor response and adverse outcome
 - Bcr/Abl-like gene signature (suggests there may be kinase gene mutations)

	MLL	Other
Deletion	1	62
All gene	0	15
Focal	1	47
Δ3-6 (Ik6)	1	20
Sequence mutation	0	6

Gene Resequencing Results

- 125 genes selected for resequencing in 187 ALL samples based on:
 - Genes located in regions of CNA
 - Known cancer genes
 - Genes with expression that characterized intrinsic clusters with poor outcome (R7/H7, R8/H8)
- Resequencing of 1st 100 genes complete in leukemia DNA

Gene Resequencing Results

- Confirmed previously identified mutations:
 - PAX5 mutation spectrum similar to SJCRH cohort

Janus Family Kinases (JAK)

- Includes JAK1, JAK2, JAK3, and TYK2
- Key mediators of signal transduction
- JAK2 mutated in P. vera and other MPD
 - V617F pseudokinase domain mutation
 - JAK2 inhibitors in clinical trials
- JAK2 R683G mutation recently reported in ~20% of Down syndrome-ALL cases
 - JAK mutations detected previously in <<1% of other ALL cases

JAK Mutations in High Risk ALL

Mullighan et al, Submitted

- Heterozygous somatic non-silent JAK mutations present in 20/187 P9906 cases
 - 18/178 non-DS (10.1%) and 2/9 DS
- All lacked common known translocations
- JAK mutations highly correlated with IKZF1 deletions and the R8 poor outcome cluster

JAK mutations in "BCR-ABL1-like" ALL

- JAK2 (n=16): 10 R683G; 3 non-R683G pseudokinase domain;
 3 kinase domain
- JAK1 (n=3): 3 pseudokinase domain
- JAK3 (n=1): uncertain functional consequences

Cytokine Withdrawal Confirms Factor Independence of JAK-Transduced BaF3-EpoR Cells

JAK-Transduced BaF3-EpoR Cells are Sensitive to Pharmacologic JAK Inhibition

COG P9906 Relapse Risk: Effect of JAK and IKZF1

Mullighan et al, Submitted

Mutations	4 yr Relapse Risk
JAK + IKZF1	78% (p=0.0002)
IKZF1 only	54%
JAK only	33%
Neither	24%

Use of JAK Inhibitors in ALL: Rationale and Next Steps

- JAK mutations present in ~10% of COG P9906 cases
 - Confer factor independence
 - Factor dependence restored with JAK inhibitor therapy
- Will agents developed for V617F P. vera pseudokinase domain mutation also inhibit ALL mutations?
 - Test in BaF3-EpoR cells transduced with various mutants
- Will JAK inhibitors be effective in this subset of ALL?
 - Test in xenografts established from ALL with JAK mutations
 - Plan for pediatric clinical trials

ALL TARGET Project: Next Steps

- Complete analysis of leukemia and germline sequencing results for initial 125 gene dataset
- Complete studies of IgH-CRLF2 translocations
 - Highly correlated with JAK mutations
 - May be another way to activate JAK pathway suggesting JAK inhibition may be effective in cases lacking JAK mutations
- Are there other kinase mutations in BCR-ABL like cases that lack JAK mutations?
 - Sequence tyrosine kinome in these cases
- Determine if this new genomic knowledge can be integrated into next generation COG ALL trials