Strategies and Opportunities for Cancer Therapy with Vaccines Inducing T cells or Antibodies

Jay A. Berzofsky, M.D., Ph.D. Vaccine Branch, CCR, NCI

NCAB Meeting Bethesda, Maryland June 17, 2008

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES

Rationale for Engineered Vaccines

- Most successful vaccines (except toxoids) have been against viruses causing acute, self-limited infections, for which the most widely used strategy is to mimic the natural infection with an attenuated, inactivated, or subunit vaccine.
- ➤ However, for cancer or viruses causing chronic infection, such as HIV or hepatitis C virus, the natural disease does not induce sufficient immunity to eradicate the infection.
- ➤ A vaccine must elicit better immunity than the disease itself.

CD8⁺ Cytotoxic T cells can detect endogenous antigenic proteins even if not expressed intact on the cell surface

Types of Tumor Antigens

Examples

-Overexpressed antigens Her-2/neu, CEA, TARP

-Altered antigens

Shared by many tumors p53, Ras, fusion proteins, MUC1

Unique to a single tumor Point mutations in various genes

-Tissue-specific antigens tyrosinase, MART1, gp100

-Novel antigens (in adult)

Fetal antigens CEA, oncofetal protein

Viral antigens HPV E6 or E7, EBV antigens

Clonal antigens Idiotype

Desirable Characteristics for Tumor Antigens

- 1. Tumor-selective
- 2. Essential to tumor cell survival
- 3. For T-cell antigens
 - Processed
 - Bind MHC
 - Immunogenic
- 4. For B-Cell antigens
 - Cell Surface Expression
 - Accessibility of Epitopes
 - Immunogenicity

In vitro

In vivo

Pre-existing Antibody response

Potential Mechanisms of Antibody Action against Tumors

- Antibody-dependent cellular cytotoxicity (ADCC): NK or other cells with Fc receptors bind antibodies and use them to target cells for killing.
- Complement-mediated lysis
- Inhibition of function of a molecule required for oncogenicity: e.g. HER-2/neu, CD25
- Success of antibodies to HER-2/neu (Herceptin) and to CD25 (Zenapax) suggests functional targets may be the most effective.

Adeno-neuECTM (Her-2) treatment causes regression of established s.c. TUBO mammary carcinomas

Adeno-neuECTM (Her-2) vaccine induces regression of established lung tumors from IV injection of TUBO breast cancer cells

Control, sacrificed day 15

Control, sacrificed 30

Ad-ECTM day 15, Sacr day 29

Ad-ECTM day 15, Sacr day 35

Ad-ECTM day 15, Sacr day 48

Park et al., Cancer Research 2008

Ad-neuECTM serum downmodulates ErbB2 (Her-2) and inhibits its phosphorylation

Park et al., Cancer Research 2008

Advantages of Vaccine over Trastuzumab (Herceptin)

- Antibody induced by vaccine is not dependent on FcRs, but directly inhibits the function of the oncogene product and inhibits tumor growth without other cells. Herceptin requires FcRs.
- Polyclonal antibodies elicited may target multiple Her-2 epitopes and be less susceptible to escape mutations than a monoclonal antibody to a single epitope.
- Continuous antibody production avoids the need for repeated expensive monoclonal antibody administration (~\$100K/yr).

CD8⁺ Cytotoxic T cells can detect endogenous antigenic proteins even if not expressed intact on the cell surface

Cancer Vaccine Problems & Strategies

Problems	Strategies to solve		
Self antigens to which host is tolerant	Target subdominant epitopes strengthened by epitope enhancement: Modify the amino acid sequence to improve MHC binding.		
Downregulation of MHC or of processing machinery	Induce higher avidity T cells that can respond to low densities of peptide-MHC		
Poor quality or quantity of immune response For therapeutic vaccines, inadequate CD4+ T help	Use cytokines to improve the quantity and quality and substitute for CD4 ⁺ help:		
Suppression of the immune response	Remove the brakes by blocking negative regulation.		

PUSH-PULL Approach to Optimizing Vaccine-induced Immunity

Topics:

- ► Improve the antigen: epitope enhancement
 - ➤ Use cytokines to improve the quality and quantity of immune response
 - ➤ Improve CTL quality by increasing avidity with IL-15
 - ➤ Improve CTL quality by using IL-15 to substitute for CD4⁺ T cell help to induce long-lived memory CTL
 - ➤ Remove the brakes by blocking negative regulation: A new NKT regulatory axis.

Peptide Fragments of Viral Proteins Bind Specifically in the Groove of Major Histocompatibility Molecules such as HLA-A, B, C

Sendai Virus Peptide Bound to H-2K^b

From DH Fremont, M. Matsumura, EA Stura, PA Peterson, & IA Wilson. Science 257: 919-926, 1992

Strategy: Epitope Enhancement by Sequence Modification to Increase Peptide Affinity for the MHC Molecule

Major Histocompatibility Molecule (HLA)

Enhanced Vaccine Protects Against Higher Viral Challenge

Ahlers et al., JCI 108:1677, 2001

TARP: TCRy Alternative Reading frame Protein

- •Expressed in prostate and breast cancers, but not in other organs
- •Using different open reading frame from normal TCRy
- •Possible role: Oncogenic transformation of the cells

Amino Acid Sequence of TARP

MQMFPPSPLFFFLQLLKQSSRRLEHTF VFLRNFSLMLLRGIGKKRRATRFWDP RRGTP (58 residues)

FLRNFSLML = HLA-A2-binding peptide TARP 29-37

Human CTL raised against an epitope-enhanced TARP peptide can kill human tumor cells expressing TARP and HLA-A2.

Use of Cytokines in Adjuvant to Steer the Immune Response to Vaccines

Cyto-	CTL	Prolif-	IL-2	IL-4	IFN-γ	Cyto-	Ab	Neutral-
kine		eration				kine	Isotyp	izing
						mRNA	е	Ab
GM-	1	1			•		lgG1,	1
CSF							2b	
IL-1β	•	•	•	•	•		lgG1	1
IL-2	•	1	•	•	sl. 🛨		lgG2a	1
IL-4	—	•	•		•		lgG1,	1
							2b	
IL-7	→	1	•		•		lgG1	•
IL-12	1	↑/→	•	sl. 🖊	1		lgG1,	1
							2a, 2b	
TNFα	♣/ →	•	•	•	•		ND	ND
IFN-γ	•	1	•	•	1		IgG2a,	1
							2b	

Two peptide vaccine candidates: PCLUS 3-18MN, PCLUS6.1-18-MN Two mouse genetic backgrounds: BALB/c, B10 congenics

Cytokine Synergies: IL-12 and GM-CSF synergized for CTL induction

Topics:

Use of IL-15 in the vaccine to induce high functional avidity CTL (recognizing low densities of peptide-MHC complexes on cells)

High, Intermediate, and Low <u>Functional Avidity</u> CTL Generated by Stimulation with Different Concentrations of Peptide Antigen

Alexander-Miller, Leggatt, & Berzofsky, PNAS 93: 4102, 1996

Hypothesis: high avidity CTL are more effective at killing tumor cells

Only HIGH AVIDITY CTL kill tumor cells

IL-2 & IL-15: DISTINCT SOURCE & FUNCTIONS

Immunization with antigen + IL-15 induces higher functional avidity memory CD8+ CTL

Target cells coated with peptide [P18-I10], μ M

Complementary Mechanisms for IL-15 in CTL Avidity Maturation

Topics:

Use of IL-15 in the vaccine to induce high avidity CTL (recognizing low densities of peptide-MHC complexes on cells)

Improve CTL quality by using IL-15 to substitute for CD4⁺ T cell help to induce long-lived memory CTL

IL-15 expression by a vaccine vector induced longer-lived memory CD8+ CTL: IFN-gamma-producing cells

Time after Booster Immunization

Explained by 1. Higher IL-15Rα expression 2. Greater homeostatic proliferation

CD4+ T-cell Help for CD8+ CTL Mediated Through Activation of Dendritic Cell

IL-15 during immunization substitutes for CD4+ T cell help to induce long-lived memory CTL (One year after immunization)

Vaccine/Cell Depletion

Conclusions for improving CTL quality

IL-15 in a vaccine:

- -Induces longer-lived memory CD8 CTL
- -Induces higher avidity CD8 CTL
- -Overcomes the need for CD4 T cell help to elicit prolonged CD8 T cell memory
- -Is a critical natural mediator by which CD4 T help elicits long-lived CD8 memory T cells

Thus IL-15 is a most promising candidate to enhance the efficacy of vaccines for use in HIV-infected or cancer patients with a deficiency of CD4 T cell help (including therapeutic vaccines for AIDS or cancer).

Topics:

Use of IL-15 in the vaccine to induce high avidity CTL (recognizing low densities of peptide-MHC complexes on cells)

Improve CTL quality by using IL-15 to substitute for CD4⁺ T cell help to induce long-lived memory CTL

Remove the brakes by blocking negative regulation: A new NKT regulatory axis.

Cancer vaccines can induce CTL measured in vitro but much less often induce clinical tumor regression.

NKT cells

NKT cells

- Unlike NK cells, they express a TCR, but have unusual restriction to a nonclassical MHC molecule

NKT cells and IL-13 suppress CTL tumor immune surveillance though the IL-4R-STAT6 pathway to induce TGF-β production by CD11b+Gr-1+ cells

Terabe et al., Nat Immunol, 2000., Terabe et al., J Exp Med, 2003.

NKT cells

NKT CELLS ARE A HETEROGENEOUS CELL POPULATION

	Type I or Classical NKT cells	Type II or Non-classical NKT cells	
CD1d-dependent	Yes	Yes	
Glycolipid specificity	Alpha-GalCer, OCH	Sulfatide	
TCR-α chain	$V\alpha 14$ -J $\alpha 18$ (in mice)	diverse	

(modified from: Godfrey D.I., Nat Rev Immunol 4: 231-237 (2004))

A new immunoregulatory axis

PUSH-PULL Approach to Optimizing Vaccine-induced T-cell Immunity

Key Collaborators

- Antibody-inducing Adeno-HER-2/neu vaccine: Jong-Myun Park, Masaki Terabe, Jason Steel, Yoshio Sakai, Guido Forni, John Morris
- Epitope enhancement: Jeff Ahlers, Takahiro Okazaki, Pablo Sarobe, SangKon Oh, Ira Pastan
- IL-15: SangKon Oh, Tom Waldmann, Liyanage Perera, Masaki Terabe, Don Burke
- Negative Regulation: Masaki Terabe, Elena Ambrosino, Jong Myun Park, Susanne Ostrand-Rosenberg, Mark Smyth, Dale Godfrey, Vipin Kumar, Takashi Yamamura