
Modeling molecular diversity in cancer

Integrating “omics”, mathematical models 
and functional cancer biology

Lawrence Berkeley National Laboratory

University of California, San Francisco

University of California, Berkeley

SRI International

Netherlands Cancer Institute

MD Anderson Cancer Center

    
  EXPERIMENT    

    MODEL    T
EST 

   
 

    
 EXPERIMENT    

    MODEL    T
EST 

   




Modeling molecular diversity in cancer

• A collection of cell lines as a model of molecular and 
biological diversity

• Three integrative biology examples
Associating pathways and markers with response
Modeling MEK signaling diversity using pathway logic 
Bayesian network models of AKT signaling

Identifying and understanding “omic” determinants 
of therapeutic response in breast cancer
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Model requirements

• The molecular abnormalities that influence drug response in 
primary tumors must be functioning in the model

• The panel must have sufficient molecular diversity so that 
statistical analyses will have the power to identify molecular 
features associated with response

Identifying and understanding “omic” determinants of 
therapeutic response



Neve et al, Cancer Cell 2006
Chin et al, Cancer Cell, 2006
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A collection of 50 cell lines retain important 
transcriptional and genomic features of primary tumors
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Associating molecular markers with 
response  to lapatinib

Debo Das, 2007

Training Test
Adaptive 
splines

Prediction:  Molecular markers and networks 
associated with sensitivity and resistance will 

predict clinical response 



Test:  Cell line markers predict 
response in HER2 positive patients

EGF30001:  A randomized, Phase III study of Paclitaxel + Lapatinib vs. Paclitaxel + Placebo
HER2, GRB7, CRK, ACOT9, LJ31079, DDX5 

GSK-LBNL collaboration
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Curated 
network model

Hierarchical analysis of Pathway 
Logic states and rules

Heiser, Spellman, Talcott, Knapp, Lauderote 

Baseline levels populate PL model states
Rules define predicted pathway activity



Example network of 
one cell line



Hierarchical analysis of network features

Prediction:  PAK1 is required for 
network activation of MEK/ERK 

cascade in luminal cell lines
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Test:  PAK1+ luminal cell lines are more 
sensitive to MEK inhibitors

CI1040 GSK-MEKi U0126
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Therapeutic agents show strong 
luminal subtype specificity

Kuo, Guan, Hu, Bayani 2007
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AKT pathway inhibitors show 
strong luminal subtype specificity



Bayesian network analysis reveals AKT 
dependent signaling in luminal lines

Mukherjee , Speed, Neve, et al., 2007

Prediction:  PI3-kinase pathway mutations will occur 
preferentially in luminal subtype cell lines 
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Test:  AKT-inhibitor responsive cell lines carry 
PI3-kinase pathway mutations

Kuo, Neve, Spellman  et al., 2007

AKT pathway mutations12/13 AKT pathway mutations in 
primary tumors are in the luminal 

subtype
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