Novel 'elements' of immune suppression within the tumor microenvironment

Nicholas P. Restifo

National Cancer Institute NIH, Bethesda, Maryland USA NCAB meeting Sept 7, 2016

At the center of the galaxy of increasingly successful cancer immunotherapies

T cell:

Tumor cell

Cancer Vaccines

Checkpoint blockade anti-PD-(L)1, anti-CTLA-4 CAR/TCR/TILbased treatments

Understanding the tumor microenvironment during initiation and growth of tumor

Metastasis is the cause of >90% of all cancer deaths

- Successful metastasis requires evasion of immunity at the secondary site
- The lung is a common site of metastasis for many cancers
- Vascular architecture has historically explained cancer's predisposition to disseminate to the lung

Hypothesis

Site-specific environmental factors – such as Oxygen – help establish immunologically permissive sites for metastasis

How do anti-tumor T cells 'sense' Oxygen, and does this affect their function?

T cells use prolyl hydroxylase domain (PHD) containing proteins

These dioxygenase (O₂) sensors containing nonheme-binding iron (Fe) that catalyzes the hydroxylation of proline residues

PHD proteins hydroxylate proline residues

The PHD enzyme splits dioxygen into hydroxylated proline and succinate

PHD enzymes degrade hypoxia inducible factor (HIF) – and possibly other proteins – in the presence of oxygen

EGLN genes encoding PHD oxygen sensors are located at three different sites in human genome

Studying T cell-intrinsic oxygen sensing required a triple KO mouse

Does oxygen affect antitumor immunity?

Can oxygen sensing be manipulated to improve cancer immunotherapy?

Oxygen Sensing by T Cells Establishes an Immunologically Tolerant Metastatic Niche

D Clever, R Roychoudhuri ... A Goldrath, Y Belkaid and NP Restifo, Cell, August 25, 2016

T-cell intrinsic PHD proteins suppress spontaneous pulmonary inflammation

WT

T-cell intrinsic PHD proteins do not trigger spontaneous inflammation in the gut

CD4⁺ T cells lacking PHD proteins are prone to produce IFN-γ after stimulation

D Clever, Cell, August 25, 2016

CD8⁺ T cells lacking PHD proteins are prone to produce IFN-γ after stimulation

T cell-intrinsic expression of PHD proteins licenses tumor colonization in the lung but not SQ tissue

T cell-intrinsic expression of PHD proteins licenses tumor colonization in the lung but not SQ tissue

PHD proteins suppress type I responses against innocuous house dust mite (HDM) Ag

Summary

- **1. T-cell intrinsic PHD proteins suppress spontaneous pulmonary inflammation**
- **2.** CD8⁺ and CD4⁺ T cells lacking PHD proteins are prone to produce IFN-γ after stimulation
- 3. T cell-intrinsic expression of PHD proteins licenses tumor colonization in the lung but not SQ tissue
- 4. PHD proteins suppress type I responses against innocuous house dust mite (HDM) Ag

Normal homeostasis Tumor colonization

Hyper-responsiveness to innocuous Ag Tumor

clearance

A Solution

Knockout or drug PHD proteins only in T cells specific for tumor antigens while leaving all other T cells intact

DMOG blocks the oxygen sensing PHD proteins

Dimethyloxalylglycine (DMOG)

Gene set enrichment analysis (GSEA) shows that DMOG/vehicle induces similar gene expression changes as PHD-tKO/WT

Inhibition of PHD proteins with DMOG before adoptive cell transfer immunotherapy

Inhibition of PHD proteins with DMOG before adoptive cell transfer immunotherapy

Inhibition of PHD proteins with DMOG improves adoptive cell transfer immunotherapy

D Clever, Cell, 2016

Improved efficacy of DMOG-cultured cells for established subcutaneous tumors

D Clever, Cell, 2016

Foxp3⁺ iTreg fate specification of human CD4⁺ T cells cultured with DMOG

Summary

- 1. DMOG blocks the oxygen sensing PHD proteins as evidenced by RNA seq and gene set enrichment analysis (GSEA)
- 2. Inhibition of PHD proteins with DMOG changes the function and phenotype of T cells . . .
- 3. . . . and improves adoptive cell transfer immunotherapy
- 4. Finally, similar maneuvers can be done with human CD4⁺ T cells

How do tumor immune suppressive mechanisms change with progressive growth?

Increased hypoxia accompanies progressive tumor growth

The tumor microenvironment is characterized by a high tissue density of necrosis

Severe tumor necrosis is associated with a poor prognosis

Necrosis releases intracellular ions into the extracellular space

Tumor interstitial fluid (TIF) has an elevated concentration of extracellular potassium ([K⁺])

Cell death correlates with levels of K⁺ in the extracellular space

R Eil, Nature (In Press), Fall, 2016

Background and Experimental Question

- 1. Human tumors persist and progress despite infiltration by tumor-specific effector T cells
- 2. Mouse and human tumors contain dense areas of cell necrosis
- 3. Cell necrosis leads to the release of an intracellular ion, potassium, into the extracellular space
- 4. Do elevated concentrations of extracellular potassium ([K⁺]) have any effect on T cell function?

Elevated [K⁺] acutely inhibits T cell effector function

R Eil, Nature (In Press), Fall, 2016

Hyperkalemia augments checkpoint inhibition of T cells that may already be in place

R Eil, Nature (In Press), Fall, 2016

Tumor Interstitial Fluid (TIF) contains ~ 40 mm of K⁺

- Elevated [K⁺] produces profound suppression of human and mouse T cell TCR induced effector function
- **2. Hyperkalemia produces profound suppression of T cell receptor-induced transcripts including IL-2 and IFN-γ**
- 3. Tumor associated hyperkalemia augments checkpoint inhibition of T cells that may already be in place

Naturally-occurring T cells express low levels of the potassium ion channel *Kcna3* encoding Kv1.3

R Eil, Nature (In Press), Fall, 2016

Increased hypoxia accompanies progressive tumor growth

Genetically engineering anti-tumor T cells to over-express the potassium ion channel Kcna3

R Eil, Nature (In Press), Fall, 2016

Kcna3 gene-engineered T cells make more IFN-γ *in vivo*

Anti-tumor T cells over-expressing *Kcna3* have enhanced therapeutic efficacy

R Eil, Nature (In Press), Fall, 2016

- 1. Tumor cell death creates elevated [K⁺] in the tumor microenvironment.
- 2. This local hyperkalemia produces profound suppression of human and mouse T cells
- 3. T cells can be gene-engineered for resistance to hyperkalemia by overexpressing the [K+] ion transporter Kcna3
- 4. Anti-tumor T cells over-expressing Kcna3 have enhanced therapeutic efficacy

Tumor-induced immunosuppression is complicated

Composition of a human being

Element	Symbol	Percentage in Body
Oxygen	0	65.0
Carbon	С	18.5
Hydrogen	н	9.5
Nitrogen	N	3.2
Calcium	Ca	1.5
Phosphorus	Р	1.0
Potassium	к	0.4
Sulfur	S	0.3
Sodium	Na	0.2
Chlorine	CI	0.2
Magnesium	Mg	0.1
Trace elements include boron (B), chromium (Cr), cobalt (Co), copper (Cu), fluorine (F), iodine (I), iron (Fe), manganese (Mn), molybdenum (Mo), selenium (Se), silicon (Si), tin (Sn), vanadium (V), and zinc (Zn).		less than 1.0

What is the immunology of the elements and how can it be used to destroy cancer?

Acknowledgements

restifo@nih.gov

Restifo Lab: Past and present

Robert Eil David Clever Madhu Sukumar Douglas C Palmer Suman Vodnala Shashank Patel Christopher Klebanoff Raul Vizcardo Zhiya Yu **Ping-Hsien Lee** Devikala Gurusamy **Christine Kariya Rigel Kishton** Anthony Leonardi Marta Bosch-Marce Arash Eidizadeh Amanda Henning

Luca Gattinoni Yun Ji Rahul Roychoudhuri Enzo Bronte Willem Overwijk Christian Hinrichs Nick Acquavella Joe Crompton Nick Klemen Tori Yamamoto Naritaka Tamaoki Rafiqul Islam

Rosenberg Lab: Eric Tran

Alena Gross

David Stroncek Franco Marincola Ena Wang

Collaborators:

John O'Shea Jon Yewdell Yasmine Belkaid Ananda Goldrath Rafi Ahmed Carl June Francis Collins

Clinical Team:

James Yang Udai Kammula Rick Sherry Stephanie Goff Paul Robbins Steve Feldman Robert Somerville **Steve Rosenberg**

Increased hypoxia accompanies progressive tumor growth

