Inter and Intra-tumoral heterogeneity in pediatric sarcoma

Jack Shern MD Lasker Research Scholar Pediatric Oncology Branch Center for Cancer Research National Cancer Institute

"It is good to have hair-splitters & lumpers." -Charles Darwin

Rhabdomyosarcoma – "the most common soft tissue sarcoma of childhood"

Week

Week													
1	2	3	4	5	6	7	8	9	10	11	12	13	15
V	V	V	V	V	V	V	V	V	V	V	V	V	
Α			Α									Α	Evaluation
С			С			С			С			С	
			Radia	tion T	herapy	\rightarrow							

													week
30	28	27	26	25	24	23	22	21	20	19	18	17	16
	V			V	V	V	V	V	V	V			V
Evaluation	Α			Α			Α			Α			А
	С			С			С			С			С

Week												
31	32	33	34	35	36	37	38	39	40	41	42	43
V	V	V	V	V	V	V			V			End of Therapy
А			Α			А			Α			Evaluation
C			C			C			C			Lvaruation

	Drug	Age	Dose			
v		< 1 year	0.025 mg/kg IV x 1			
	VinCRIStine	≥ 1 year and < 3 years	0.05 mg/kg IV x 1 (maximum dose 2 mg)			
		\geq 3 years	1.5 mg/m ² IV x 1 (maximum dose 2 mg)			
Δ	Destinomysin	< 1 year	0.025 mg/kg IV x 1			
А	Dacunomychi	≥ 1 year	0.045 mg/kg (maximum dose 2.5 mg) IV X 1			
C	Crualanhaenhamida	< 3 years	40 mg/kg IV X 1			
C	Cyclophosphanide	\geq 3 years	$1200 \text{ mg/m}^2 \text{ IV X } 1$			
Mesna ar	nd fluids will be used w	vith Cyclophosphamide				
Neutrophil growth factor will be used in VAC and VC cycles. See Section 8 for specific directions.						
If there is an age change during treatment, use the new appropriate age dosing in the next cycle						

Rhabdomyosarcoma: Inter-tumor heterogeneity

Shern et al. Cancer Discovery. 4: 216-231, 2014.

Can we use genetic information to further refine risk stratification?

Risk Group	Histology	Primary site	Initial resection	Distant metastases	Proportion of patients	EFS	
Low	EDMS	Favorable	AnyNoneYesNone		200/	70-95%%	
LOW	EKIVIS	Unfavorable			32%		
Intermediate	ERMS	Unfavorable	No	None	27%	73%	
Intermediate	ARMS	Any	Any None		25%	65%	
II: al	ERMS	A	A	Present	8%	35%	
High	ARMS	Any	Any	Present	8%	15%	

ERMS, embryonal rhabdomyosarcoma; ARMS, alveolar rhabdomyosarcoma; EFS, event-free survival

Hawkins et al. Curr Opin Pediatr. 2014 Feb; 26(1): 50-56.

Williamson D et al. JCO 2010;28:2151-2158

CHILDREN'S ONCOLOGY GROUP

ARST14B1 - Project Overview

2 unstained slides from Clinically annotated RMS cases COG histology review and clinical annotation

NCI extraction and quantification of nucleotides and sample <u>genotyping</u>

> DNA Targeted Capture and Illumina sequencing

NCI Oncogenomics pipeline to call point mutations, indels, amplifications and deletions <u>RNA</u> RNAseq – Shern Nanostring assay Mike Arnold Nationwide Childrens

Correlation between the observed genetic alterations (RAS pathway alterations vs no RAS pathway alteration); expression signatures and clinical outcome

COG ARST14B1 Summary

AKT1	CDK4	GAB1	MYCN	PTEN
ALK	CDKN2A	HRAS	MYOD1	PTPN11
ARID1A	CTNNB1	IGF1R	NF1	ROBO1
ATM	DICER1	IGF2	NRAS	SMARCA4
BCOR	ERBB2	KRAS	PDGFRA	SOS1
BRAF	FBXW7	MDM2	РІКЗСА	SOS2
CCND1	FGFR1	MET	PKN1	TP53
CCND2	FGFR4	MTOR	PTCH1	

Tier I Calls - (Somatic/germline status unknown)

- Hot Spot or stop or deleterious indel
- High copy number amplification
- Deep deletion of any included gene

Clinical Characteristics of the COG cohort

Characteristic	n=347 (%)
Sex	
Male	234 (67)
Female	113 (33)
Age at presentation (years)	
Median	6.4
	0.4
Range	0.02-37.8
Tumor Histology	
Alveolar	66 (19)
Embryonal	219 (63)
Embryonal with diffuse anaplasia	15 (4)
Embryonal with focal anaplasia	6 (2)
Mixed Alveolar and Embryonal	2 (<1)
Mixed Embryonal and Spindle cell	9 (3)
Spindle cell	16 (5)
Botryoid	10 (3)
Rhabdomyosarcoma NOS	3 (1)
Cutology Specimon	3(1)
Cytology Specimen	1 (<1)
Anatomic Group	
Bladder Prostate Group 3	18 (5)
Bladder Prostate Group 4	6 (2)
Extremity Group 3	16 (5)
Extremity Group 4	35 (10)
Example GU	8 (2)
Head and Neek	0 (2) 20 (8)
	29 (0)
	25 (7)
Parameningeal Group 3	46 (13)
Parameningeal Group 4	14 (4)
Paratesticular	64 (19)
Pilot Study No Data	10 (3)
Retroperitineum/Peritineum/Trunk Group 3	44 (13)
Retroperitineum/Peritineum/Trunk Group 4	30 (9)
Risk Group	
Low	93 (27)
Intermediate	131 (38)
High	123 (35)
Variant Calls	
Median	1
Bange	0-5
Runge	0-0

Mutation Summary

	Fusion Negative Cases (n=)	Total Fusion Negative Cases	Fusion Negative Cases (%)	Fusion Postive Cases (n=)	Total Fusion Positive Cases	Fusion Positive Cases (%)
BCOR	43	281	15%	3	66	5%
NF1	42	281	15%	1	66	2%
NRAS	41	281	15%	0	66	0%
TP53	36	281	13%	3	66	5%
FGFR4	26	281	9%	0	66	0%
KRAS	25	281	9%	0	66	0%
PIK3CA	23	281	8%	2	66	3%
HRAS	18	281	6%	1	66	2%
FBXW7	17	281	6%	0	66	0%
CDKN2A	17	281	6%	0	66	0%
MDM2	16	281	6%	1	66	2%
CTNNB1	16	281	6%	0	66	0%
MYOD1	11	281	4%	0	66	0%
PTEN	5	281	2%	0	66	0%
DICER1	4	281	1%	0	66	0%
MET	4	281	1%	0	66	0%
IGF1R	4	281	1%	1	66	2%
ARID1A	3	281	1%	0	66	0%
ERBB2	2	281	1%	0	66	0%
PTPN11	2	281	1%	0	66	0%
FGFR1	2	281	1%	0	66	0%
PTCH1	1	281	0%	0	66	0%
ATM	1	281	0%	0	66	0%
CDK4	1	281	0%	14	66	21%
MYCN	0	281	0%	9	66	14%

Identified at least one Tier 1 driver in 221/281 (80%) fusion negative cases

Percentage of cases summarized by anatomy

- *TP53* pathway mutations are common in fusion negative extremity lesions
- Female genitourinary cases account for all of the *DICER1* lesions
- *HRAS* and *KRAS* do not occur in orbital tumors
- *MYOD1* mutations are restricted to the head

									Trunk
		xate			*		\$	•	um.
	Q ⁴	051	ر بر	× ,*	ec.	in		lai ato	net
	, det >	enity	Ale	a and		ment	restit	open	
	BISO	EXTRE	Ferne	Heat	Orbit	Pala.	Para	Retr	
NRAS	8	0	29	33	21	5	23	7	
HRAS	13	0	0	0	0	2	8	13	
KRAS	4	0	0	13	0	7	11	16	
FGFR4	8	0	0	13	21	13	5	10	
NF1	17	14	0	8	8	20	13	21	
PIK3CA	8	0	14	13	4	18	3	7	
FBXW7	0	0	0	4	4	4	13	8	
MYOD1	0	0	0	4	0	16	0	0	% of cases
TP53	8	43	29	21	25	9	0	20	
MDM2	4	29	14	0	4	7	8	2	
DICER1	0	0	57	0	0	0	0	0	
ERBB2	0	0	0	0	0	0	0	3	
PTPN11	0	0	0	4	4	0	0	0	
BCOR	8	14	0	17	25	18	16	13	
CDKN2A	0	0	0	13	8	13	0	8	
PTEN	4	0	0	0	0	5	0	2	
ARID1A	0	0	0	4	0	2	0	2	
CTNNB1	8	0	14	0	8	2	5	11	
MET	0	0	0	0	0	2	2	3	
FGFR1	0	0	0	0	0	2	2	0	
ATM	0	0	0	0	0	2	0	0	
IGF1R	0	0	0	0	4	0	3	2	

1 tumor \neq 1 genetic lesion

Hypothesis: Fusion Negative Rhabdomyosarcoma is polyclonal?

Hypothesis: Increased number of mutations leads to a worse outcome

What genes go together?

	Total Cases (n=)	Co existing lesion (n=)	Co-Existing lesion (%)	No co-existing lesion (n=)	No co-existing lesion (%)
HRAS	18	7	39%	11	61%
KRAS	25	10	40%	15	60%
MDM2	16	7	44%	9	56%
DICER1	4	2	50%	2	50%
MET	4	2	50%	2	50%
NRAS	41	23	56%	18	44%
CTNNB1	16	10	63%	6	38%
TP53	36	24	67%	12	33%
FGFR4	26	18	69%	8	31%
BCOR	43	33	77%	10	23%
NF1	42	33	79%	9	21%
PIK3CA	23	19	83%	4	17%
FBXW7	17	15	88%	2	12%
CDKN2A	17	15	88%	2	12%
MYOD1	11	10	91%	1	9%
IGF1R	4	4	100%	0	0%

Infants less than 1 year old and the distribution of RAS isoform mutations by age

MYCN and CDK4 amplifications are poor prognostic modifiers in PAX fusion positive tumors

Pediatric Sarcoma: Intra-tumor Heterogeneity

Chen et al. Cancer Cell 24, 710-724, 2013

Single cell sequencing

Skull based metastatic tumor

Carly Sayers Xiyuan Zhang Collagens, Fibrillin, IGFBP's

CD4+, CD37+, CD53+, CD74+ Producing Complement and Lysozyme

G2/M – TOP2A, FOXM1, Kinesins, Centrosomal genes

Atypical Neurofibroma with concern for Malignant Peripheral Nerve Sheath Tumor

Neoplastic Schwann cells: NRXN1, SOX10, S100B

Single cell sequencing identifies IL34 as a novel therapeutic target in NF1 tumors

Nature Reviews | Disease Primers Gutmann, D. H. Nature Reviews. (2017)

Felix, J. et al. Structure (2013)

HDAC inhibitors are potent repressors of PAX3-FOXO1 transcriptional activity.

Abraham, J. et al. Genes Dev (2014)

Normalized Expression

Even in a "homogenous" cell culture, single cell RNAseq shows cell to cell variability

Bulk sequencing averages across the population thereby losing information about rare cell populations

Definition of these cell populations has major implications for our understanding of tumor evolution and therapeutic resistance

Acknowledgments

Children's Oncology Group
Corinne Linardic
Erin Rudinski
Mike Arnold
Steve Skapek
Dave Hall
Don Barkauskus
Doug Hawkins

Institute of Cancer Research UK Janet Shipley Anna Kelsey Rebecca Brown Julia Chisholm Joanna Selfie

NCI DCEG

Kristie Jones Belynda Hicks

NCI CCR

Javed Khan Berkley Gryder Young Song Ashley Walton Rajesh Patidar Jun Wei Mike Kelly

NCI, CCR, Pediatric Oncology Branch Carly Sayers Xiyuan Zhang Marielle Yohe Christine Heske Carol Thiele Brigitte Widemann

NATIONAL CANCER INSTITUTE Center for Cancer Research

CHILDREN'S ONCOLOGY GROUP

The Lasker Clinical Research Scholars Program at the NIH

Goal – To grow the diminishing pool of talented clinical/translational researchers.

Total program duration 8 years:

Years 1-5: NIH Intramural Research Program full support (salary and research support)

Years 6-8: salary and/or research support of up to \$500,000/year at outside institution, OR continuation in Intramural Research Program

Candidates – Early stage clinical researchers, within 10 years of completing core residency, with the ability to conduct independent research.

http://www.nih.gov/science/laskerscholar/

Intramural Research Program Our Research Changes Lives one program many people infinite possibilities

