RFA Concept Proposal to the Board of Scientific Advisors December 4, 2018

Cellular Cancer Biology Imaging Research "CCBIR" Program

Michael Graham Espey, Ph.D., M.T.(ASCP) Program Director NCI Division of Cancer Biology

Planning and Engagement Efforts (a grassroots concept)

NCI in conjunction with the American Society for Cell Biology, held a Strategic Workshop in April, 2018:

- 1) to examine the state of imaging science at the subcellular-cellular length scales;
- 2) to network the cell biology and cancer biology research communities;

Community feedback from this Strategic Workshop indicated that:

- Advances in cellular-scaled imaging modalities offer transformative potential for cancer research;
 - Engine to drive new mechanistic understanding in cancer biology;
 - Start point to reveal processes that could become new targets for therapy;
- Cancer biology lags behind other fields in leveraging advanced cellular imaging tools;
 - Access for smaller/isolated labs to cutting edge imaging infrastructure can be limiting;
 - Inertial barriers exists in moving cell biology imaging into cancer research;
 - Imaging cancer biology often requires specialized modifications to systems designed to study normal cell biology;
 - Technology dev. and discovery-based cellular imaging does not do well in cancer peer review

F

Portfolio niche areas having aspects of advanced imaging

Cellular Cancer Biology Imaging Research (CCBIR) Program

Goals of the RFA:

- To create resource centers that facilitate both development and use of advanced imaging technologies at the subcellular to cellular length scale to address basic cancer research problems;
- To foster a sustainable collaborative community between cellular imaging technology developers and basic cancer biology researchers across the NCI portfolio.

The UM1 Cooperative Agreement mechanism addresses this need:

- Enables a virtuous cycle of problem solving between tech. dev. and end-user adopters in defined areas of cancer biology research that leverage cellular imaging approaches;
- Programmatic "U added" opportunities:
 - Community-solicited pilot project process and interdisciplinary workforce development to stimulate broader impact and implementation;
 - Coordinate synergy with existing complementary NCI/NIH programs;
 - Potential to elevate as a "breeder" program that spins-off advances into multiple priority research areas.

Cellular Cancer Biology Imaging Research (CCBIR) Program

Goals of the RFA:

- To create resource centers that facilitate both development and use of advanced imaging technologies at the subcellular to cellular length scale to address basic cancer research problems;
- To foster a sustainable collaborative community between cellular imaging technology developers and basic cancer biology researchers across the NCI portfolio.

The UM1 Cooperative Agreement mechanism addresses this need:

- Enables a virtuous cycle of problem solving between tech. dev. and end-user adopters in defined areas of cancer biology research that leverage cellular imaging approaches;
- Programmatic "U added" opportunities:
 - Community-solicited pilot project process and interdisciplinary workforce development to stimulate broader impact and implementation;
 - Coordinate synergy with existing complementary NCI/NIH programs;
 - Potential to elevate as a "breeder" program that spins-off advances in NCI's priority research areas.

CCBIR Program: Breadth and Scope

Technology development is best driven in the context of addressing a fundamental challenge

Examples of cancer biology thematic-priority areas responsive to this RFA concept could include:

- biophysical imaging of <u>oncogenic signaling</u> in live cancer cells;
- spatio-temporal resolution of <u>metabolism</u> and redox effectors in subcellular compartments;
- functional anatomy of <u>cancer stem cells</u> to aid lineage tracing and <u>evolution of resistance</u>;
- coupling single cell -omics with longitudinal imaging of metastasis;
- multiscale imaging (subcellular-to-cellular, time) of the <u>tumor microenvironment</u>;
- dynamic imaging of <u>immune effector-cancer cell</u> interactions.

Examples of cancer biology thematic-priority areas responsive to this RFA concept could include:

- biophysical imaging of <u>oncogenic signaling</u> in live cancer cells;
- spatio-temporal resolution of <u>metabolism</u> and redox effectors in subcellular compartments;
- functional anatomy of <u>cancer stem cells</u> to aid lineage tracing and <u>evolution of resistance</u>;
- coupling single cell -omics with longitudinal imaging of metastasis;
- multiscale imaging (subcellular-to-cellular, time) of the <u>tumor microenvironment</u>;
- dynamic imaging of <u>immune effector-cancer cell</u> interactions.

Examples of enabling imaging technologies:

- ➤ Super-resolution microscopy
- > Spectroscopy imaging (MS, IR, Raman)
- > Live cell morpho-dynamics, connect-omics
- Optogenetic, functionalized probes
- > Genetically eng. lineage tracing
- Intravital microscopy

Examples of cancer biology thematic-priority areas responsive to this RFA concept could include:

- biophysical imaging of <u>oncogenic signaling</u> in live cancer cells;
- spatio-temporal resolution of <u>metabolism</u> and redox effectors in subcellular compartments;
- functional anatomy of <u>cancer stem cells</u> to aid lineage tracing and <u>evolution of resistance</u>;
- coupling single cell -omics with longitudinal imaging of metastasis;
- multiscale imaging (subcellular-to-cellular, time) of the <u>tumor microenvironment</u>;
- dynamic imaging of <u>immune effector-cancer cell</u> interactions.

Examples of enabling imaging technologies:

- Super-resolution microscopy
- > Spectroscopy imaging (MS, IR, Raman)
- > Live cell morpho-dynamics, connect-omics
- Optogenetic, functionalized probes
- > Genetically eng. lineage tracing
- Intravital microscopy

F

Proposed UM1 CCBIR Program Structure

- Instrumentation, probes, computational & data science;
- Fosters interoperability of modular cellular imaging systems

TECH: Cellular-scaled imaging **Tech**nology innovation & development

Pilot projects

Training and dissemination

CE: Community **E**ngagement

Collaborative Pilot projects
 e.g., ½ inside + ½ outside Institution

RTB: Research Test Bed

- RTB provides wet-lab context for demonstration-refinement of TECH;
- Iterative virtuous cycle of increasing experimental sophistication with time;
- Breadth and scope of each UM1 is defined by a theme;

Oncogenic signaling

Metabolism - organelles

Cancer Stem cells

Microenvironment

Metastasis

Immuno-Oncology

Proposed Initiative: NCI UM1 CCBIR Program

- RFA with set-aside of \$12M x 5 years = \$60M
 - UM1 grant mechanism to allow for programmatic guidance
 - anticipate 3 4 UM1 Centers (approx. \$3.0 M total costs/UM1)
 - one receipt date
- Each UM1-CCBIR would be thematically centered in a basic cancer research priority area
 - UM1s collectively would be autonomous, with programmatic coordination as appropriate (e.g., pilot projects, workshops, interfacing with other NCI imaging programs/activities)
- DEA Special Emphasis Panel review would best cover the needed broad interdisciplinary expertise
 in cell-scaled imaging and basic cancer research;
- Receipt beginning July, 2019; April, 2020 award start; Active in FY20 FY25

Initial questions from the BSA sub. comm. reviewers:

- Q: Can the RFA emphasize that the UM1 center must focus on a question or problem in cancer biology, with imaging being the technology to support that line of investigation?
 - A: Yes, the intent is for the "imaging tech" to be driven by the unique cancer biology questions each UM1 center is addressing.
 - the relationship between cancer biology and tech. dev. is iterative with increased sophistication over time;
 - the balance and synergy between TECH, RTB and CE will be a special review criteria;
 - will be emphasized to both applicants during the pre-application period and to peer reviewers during pre-review orientation.
- Q: Why not structure this RFA as many U01s with a U24 coordinating center to encourage and support more ideas?
 - A: The UM1 mechanism allows for TECH, RTB and CE elements to be uniquely interwoven to achieve the RFA's programmatic goals:
 - CE pilot projects provide a pipeline to invigorate UM1 with new ideas, and are a vehicle to democratize the scientific engagement to a wider participant base beyond the individual UM1 home institution;
 - UM1 structure focuses a suite of interoperable "TECH" systems toward solving the overarching cancer biology problem;
 - Through this RFA, NCI is piloting this unique UM1 structure.

- Q: What are your measures of success? Provide specific examples.
 - A: The measures of CCBIR program success are as follows:
- Iterative optimization of CCBIR tech. ultimately becomes enabling to advance or open up new specific priority sectors of mechanistic cancer biology research;
 - spatio- temporal dynamics of oncogenic signaling leading to new targets;
 - predictive biomarkers at sub-to-cellular length scales that inform on efficacy/resistance;
- Permeation of CCBIR technological and conceptual innovation into the broader cancer research community across NCI's basic research portfolio.
 - generates spin-offs of successful research awards via other mechanisms (P01, U01, R01);
- CCBIRs stimulates dissemination of scalable imaging approaches into the commercial sector;
 - commercialization of cancer biology tools broadens the base of adopters increasing opportunities for discovery and national impact.

Extra slide- definition of the UM1 mechanism:

UM1 Cooperative Agreement Research Project With Complex Structure

- The UM1 mechanism provides support for large-scale research activities with complicated structures that cannot be appropriately categorized into an available single component activity code.
- The components represent a variety of supporting functions and are not independent of each component.
- Substantial Federal programmatic staff involvement is intended to assist investigators during performance of the research activities, as defined in the terms and conditions of the award.