High-Quality Risk-based Cervical Cancer Screening for the U.S. and the World:

A Realistic Example of Precision Prevention

Mark Schiffman, MD, MPH Nicolas Wentzensen, MD, PhD, MS

November 29, 2017

Main Message

- Cervical cancer has a uniform etiology and pathogenesis worldwide: Persistent HPV is the necessary cause
- Cervical cancer prevention already a success in some highresource countries
 - But "precision prevention" now possible
- Worldwide burden still increasing
- New strategies can greatly increase the reach of prevention efforts

Most Of HPV-Attributable Cancer Burden in LMIC*

* Low and middle income countries

Nature Reviews | Disease Primers

Age-Adjusted Cervical Cancer Incidence

UN Human Development Index

Different settings merit separate strategies, all based on same underlying science

NCI Cervical Cancer Prevention Research: From Discovery to Impact

Some Basic Facts about Human Papillomaviruses

HPV Has a Relatively Small, Simple Genome

Nature Reviews | Disease Primers

Which HPVs Cause Cervical Cancer?

Time (years)

Demarco et al., in preparation

HPV16 lineages/sublineages

Burk et al., <u>Virology</u> 2013.

E7 is hypovariable in cancers around the world

- HPV16+ women in our large cohorts, and
- 1,609 cancers around the world from IARC:
- In cancers, E7 was significantly less variable than all other viral regions

Viral region	% IARC cancers	Р	
E7	0.8%	reference	
E5	6.3%	8.0E-11	
E4	8.3%	1.9E-09	
E6	8.4%	6.1E-05	
L1	9.1%	7.0E-05	
E1	22.0%	2.2E-04	
E2	26.4%	5.1E-15	
L2	43.6%	1.0E-14	
URR	44.8%	2.2E-16	

Mirabello et al., <u>Cell</u> 2017 Sep 7;170(6):1164-1174.

Where Do Cervical Cancers Originate?

The Cervical Squamo-Columnar Junction

Uniquely prone to HPV-induced carcinogenesis

HPV Natural History and Steps to Cervical Cancer

Here is What We Learned

Cervical Carcinogenesis

Prevention Methods

Preventing cervical cancer, possible interventions at each step of HPV natural history

Adapted from Cancer Epidemiol. Biomarkers Prev., 2013, 22, 553–560, Schiffman, M. & Wentzensen, N., Human papillomavirus infection and the multistage carcinogenesis of cervical cancer, with permission from AACR

> Schiffman, M. et al. (2016) Carcinogenic human papillomavirus infection Nat. Rev. Dis. Primers doi:10.1038/nrdp.2016.86

A scientific evaluation of one or two doses of the HPV vaccines

Objectives

- For each vaccine, evaluate the non-inferiority of 1 vs 2 doses in the prevention of new cervical HPV16/18 infections that persist 6+ months*
- 2. For each vaccine, evaluate **1 dose of HPV vaccination compared to 0** vaccination doses (virologic endpoint)
- **3. Compare sustained immune titers** via measurement of serum antibodies between girls who received 1 and 2 doses of the HPV vaccines

Preventing cervical cancer, possible interventions at each step of HPV natural history

Adapted from *Cancer Epidemiol. Biomarkers Prev.*, 2013, **22**, 553–560, Schiffman, M. & Wentzensen, N., Human papillomavirus infection and the multistage carcinogenesis of cervical cancer, with permission from AACR

> Schiffman, M. *et al.* (2016) Carcinogenic human papillomavirus infection Nat. Rev. Dis. Primers doi:10.1038/nrdp.2016.86

The screening program

- Precision prevention: Goal to detect and treat true precancer while minimizing over-treatment
- Parts
 - Population screening (presumed normal)
 - Triage of positives
 - Treatment to prevent cancer
 - Post-treatment follow-up
- Lifetime strategy
- Must be concordant with HPV vaccination
- Cytology vs. HPV Testing vs. Cotesting

HPV as primary screen everywhere

- USPSTF draft recommendation
- Permits self sampling
- Type restriction
- High-throughput central tests vs Point-of-Care
- Existing US FDA-approved tests fundamentally similar, except for types individually identified
- Tests adapted to low-resource regions are nearly ready

RATE OF CERVICAL CANCER FOLLOWING NEGATIVE HPV TEST VS. NEGATIVE CYTOLOGY

Pooled analysis of 4 european randomized trials of HPV testing vs cytology

✤ 176,000 women 20 – 64 years old

Why not cotesting with HPV testing and cytology?

- Kaiser Permanente Northern California (KPNC)
- ✤ 1,000,000+ women age 30-64
- HPV testing allows for extended screening intervals
- Very little additional reassurance of cotesting vs. HPV alone

The screening program

- Precision prevention: Goal to detect and treat true precancer while minimizing over-treatment
- Parts
 - Population screening (presumed normal)
 - PRIMARY HPV TESTING AT EXTENDED INTERVAL
 - Triage of positives
 - Treatment to prevent cancer
 - Post-treatment follow-up

Cervical cancer screening programs in different settings

High-resource settings

Low-resource settings

Primary screening	Cytology	HPV	Cotesting (Cytology and HPV)	HPV	VIA
Triage test	Equivocal cytology	All positives	HPV-positive, cytology- negative	Visual or molecular triage	
Diagnosis	Colposcopic biopsy				
Treatment	Excision		Abla	ation	

 Triage and diagnosis to decide who among the screen-positives needs treatment

Wentzensen Lancet Oncol 2014, Schiffman Nat Rev Dis Primers 2016

Risk-based approach to screening and management

High risk: Treatment

Medium risk: Colposcopy

Low risk: Triage or repeat testing

Minimal risk: Regular screening interval

High / middle resource setting

Low resource setting

Wentzensen JCV 2016

Triage strategies

Cytology-based	Molecular	Visual	
Cytology / Automation	HPV genotyping	VIA / Automation	
p16/Ki-67 / Automation	Methylation GGACGCTAGACTGCTA	Colposcopy	

Both settings

Low resource setting

Cytology-based triage

Cytology / Automation

p16/Ki-67 / Automation

A new approach to automated cytology

- Scanning of cytology slides (FocalPoint)
- Machine learning score indicating risk of precancer:
 - High
 - Moderate
 - Low

Schiffman IJC 2016

p16/Ki-67 dual stain (DS) and HPV genotyping

- 13,000 HPV-positive women enrolled at Kaiser Permanente Northern California
- Automated dual stain analysis feasible

Molecular triage

Molecular marker discovery: TCGA, SUCCEED

- Somatic mutations, copy number variation, methylation, HPV integration
- TCGA: Integrated characterization of cervical cancers
- **SUCCEED:** Integrated characterization of cervical precancers

Methylation of the HPV genome

Wentzensen JNCI 2012, Mirabello JNCI 2012, Clarke CEBP 2013

1

Albert Einstein College of

Clinical performance of viral methylation

1 Methylated Unmethylated Absolute risk of precancer **Threshold for** \odot $\mathbf{\cdot}$ colposcopy referral (\cdot) \odot \odot \bigcirc \odot HPV16 HPV18 HPV31 HPV33 HPV56 HPV58 HPV59 HPV35 HPV39 HPV51 HPV52 HPV45

- Now developing an integrated NG-based HPV detection, genotyping and methylation assay
- Applications in high- and low-resource settings (self-sampling)

Visual triage

Low resource settings: Automated image analysis

- NCI Colposcopy Image database(>100K)
 - Guanacaste Natural History Study
 - Costa Rica Vaccine Trial
 - ALTS Trial
 - Biopsy Study

- Evaluation sites
 - Rutgers University (Mark Einstein)
 - Nigeria
 - El Salvador

RUTGERS

Extramural partners, non-profits, companies

High resource settings: Improving colposcopy

- First US colposcopy guidelines were developed by a joint intramural-extramural effort and published in 2017
- NCI Biopsy Study provided key evidence for these recommendations

Large-scale evaluation of screening and triage strategies

Group	3-year risk of precancer	Sample	Expected precancers
HPV+	5%	50,000	2,500
HPV-/Pap+	0.5%	10,000	50
HPV-/Pap-	0.05%	10,000	5
Total		70,000	2,555

Improved Risk-Informed HPV Screening (IRIS): A large prospective study to evaluate biomarkers for cervical cancer screening, triage, and management nested in a large integrated healthcare system (Kaiser Permanente Northern California)

New screening and management guidelines for the US

Recommendation

Integrating vaccination and screening: HPV-Faster

Bosch 2015 Nat Rev Cancer

A comprehensive program for every setting

High-resource settings

Low-resource settings

