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Slide 19 – left Panel
 
The NCI RAS Initiative has generated reagents that enable structural analysis of RAS on membranes – key data to inform and guide model development. These include the following examples - 
 
Biochemical/biophysical properties of fully processed KRAS4b
RAS on nanodiscs
Lipid composition of RAS:membrane interaction
RAS:RAF binding in the context of nanodisc membranes
 
Structure of RAS on membranes
Crystallography of KRAS, and KRAS:effector complexes
NMR of KRAS bound to nanodiscs
X-ray/neutron scattering of KRAS on nanodiscs
Cryo-EM imaging of KRAS protein complexes (+effectors)
 
Dynamics of RAS in membranes
Supported bilayers in vitro
Live cell imaging with single molecule tracking
	
	
	Slide 19 – Middle Panel
 
Adaptive spatial resolution (e.g., sub-grid modeling)
Propagating both coarse-grained and classical (atomistic) MD information, we aim to maintain the highest fidelity possible at the point of interactions while capturing long distance effects
Multiple time scales
By judiciously switching between spatial scales we enable investigation of timescales that are orders of magnitude longer than possible with fine-scale simulation alone.
Automated hypothesis generation and dynamic validation
We will efficiently and accurately explore, e.g.,  possible interaction sequences by coupling Machine Learning techniques with large-scale predictive simulation.
Extreme scale simulation
Requried novel computational algorithms and techniques will be developed for use on Sierra-class architectures, and will be designed for exascale.
Deep learning algorithms
Powerful pattern recognition tools will accelerate our predictive simulation capability by giving rapidly identifying, e.g., the time or region where a sub-grid model is needed or by logically exploring an intractably large decision tree.
Uncertainty quantification
Application of our extensive capability will be tested in the new (highly uncertain) world of biology and healthcare, leading to new insights and the development of new methods
Scalable statistical inference tools
The continued convergence of data analytics and predictive simulation as we approach exascale will require statistical tools that scale far beyond what is current, requiring the development of new strategies.




Pilot 2 Objectives 

Goal is to develop a predictive molecular-scale model of 
RAS-driven cancer initiation and growth that can provide 
the needed insight to accelerate diagnostic and targeted 
therapy design. 

Aims: 
• Adaptive time and length scaling in dynamic multi-

scale simulations. 
• Extended RAS-complex interaction model 
• Development of machine learning for dynamic 

validation of models 



Methodology Overview: Molecular Dynamics (MD) 

• Represent every atom in a system  
• Describe the forces on all atoms: 

 
 

• Integrate: F = ma (millions of times) 
• Result: position of every atom as a 

function of time 
• Can compare with experimental 

structures/dynamics 
 

Current limitations: 
• 100,000’s of atoms 
• 10,000’s of water molecules 
• 1,000’s of lipids 
• < 1 µs  
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DPPC lipid 

Protein α-helix 

AT              CG   • Merge several heavy atoms into a single 
“bead” 

• Describe bead-bead interactions with 
averaged force field 

• Sacrifice atomistic structural and dynamic 
information 

• Much less computer and time intensive 
• Same computational scaling properties 

 
6 orders of magnitude increase in sampling! 

• 100s of μs* (+3 orders of magnitude) 
• 100,000s of lipids (+2 order of magnitude) 

*Actual “physiological’ timescale is even longer as there is also 
about a 10-fold increase in dynamics 

Coarse Grained Molecular Dynamics (CGMD) 



Atomistic (MD) 
• Use for smaller systems where 

greater detail is required 
• Can obtain quantitative results 
• Ideal for local conformational 

changes or calculations of energetics 
 
 

Atomistic MD vs CGMD 
Coarse Grained (CGMD) 
• Use for larger systems that require a 

longer timescale 
• Good for obtaining general properties 
• Ideal for self-assembly and protein-

protein interactions 
 

Aim 1 
 
We will create a new 
capability: Adaptive 
resolution MD that 
switches methodology as 
needed 



Aim 2: Understanding activation of extended 
Ras complex 
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Aim 3: Automated hypothesis generation and 
dynamic validation 
 

    

High-fidelity simulation 

Ensembles of simulation 
[parameter|output] sets 

CORAL computing architectures 
power the dynamic validation loop 

Machine learning to train a 
reduced-order predictive 

model 
 

High dimensional 
model parameters 

Hypothesis generation 
– use the ML model to 
predict parameters for 

experimental data 



Year 1 Year 3 Year 2 

Ca
pa

bi
lit

y 
Build on computational advances 



Current Status 
• Focused team of NIH and DOE laboratory members have been meeting bi-

weekly since March 
– 20+ scientists spanning skills from biology and oncology to computer science 

and physics 

– More frequent discussions for subgroups: Algorithms, Workflow/Analysis, 
Molecular Simulation 

• Created Confluence website, plan quarterly site visits  
– Establishing touch-points across organizations to ease data/information flow 

• Defined Technical Goals and project approach 
– Established milestones and schedule 

• Already working! 
– Beginning to explore test cases and evaluate strategies  
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