

The Molecular Characterization Laboratory (aka MoCha)

P. Mickey Williams, PhD

Director of the Molecular Characterization Lab, Frederick National Laboratory for Cancer Research

February 27, 2023

SPONSORED BY THE NATIONAL CANCER INSTITUTE

- Provide cutting-edge genomic technologies and assays that are well characterized, accurate and reproducible in support of NCI pre-clinical research and clinical efforts (DCTD)
- Provide technical expertise in support of the development and functional oversight of Leidos sub-contracted laboratory activities
- Utilize NCI and Leidos CRADAs to provide novel technologies and assays to meet our goals
 - Illumina (TSO500ctDNA liquid biopsy assay)
 - O ThermoFisher (Genexus Myeloid assay)
- Sharing all of our data publicly through NCI approved databases

- Moonshot Biobank
- Histology and Pathology (CLIA Accredited Complex Assay Lab)
- Research and Development
- CLIA Genomics Lab (CLIA Accredited Complex Assay Lab)
- Quality Assurance
- BioInformatics
- Administration
- MoCha began in April 2010

Cancer Moonshot Biobank Research Protocol (NCI #10323)

To support current and future investigations into <u>drug resistance and sensitivity</u> and other NCI-sponsored cancer research initiatives through the procurement and distribution of multiple longitudinal biospecimens and associated data from a <u>diverse</u> group of cancer patients who are undergoing standard of care treatment at NCI Community Oncology Research Program (NCORP) sites and other NCTN sites.

- To provide a service of value to study participants and their medical providers through the performance of molecular profiling assays on tumor samples in a CLIA-certified laboratory and reporting of results to physicians and patients that they may opt to use in clinical management.
- Enable the development of patient-derived models such as cell lines and xenografts for cancer researchers through the provision of biospecimens from 20% of study participants to the NCI's Patient Derived Models Repository (PDMR), a national resource available to investigators (<u>https://pdmr.cancer.gov/</u>).
- To develop increased capabilities in U.S. community hospitals and clinics for contribution to cancer research through biobanking activities.

- Study launch date: September 16, 2020
- Full data set (including histological and radiological images) released in dbGaP in 2022; planning for release to CTDC
- Enrollment as of February 20, 2023: 188
- 60 clinical reports returned to patients and treating physicians
- Focus areas:
 - Engagement of patients and sites to increase enrollment
 - Expansion of sites
 - Continued assessment of specimen and data quality
 - Preparation for data release

Genomic Landscape of NCI's Patient-Derived Models Repository

NCI Patient-Derived Models Repository (PDMR)

NATIONAL CANCER INSTITUTE DCTD Division of Cancer Treatment & Diagnosis

PDMR NCI Patient-Derived Models Repository

Welcome to the NCI Patient-Derived Models Repository (PDMR)

Background

The National Cancer Institute (NCI) is developing a national repository of Patient-Derived Models (PDMs) comprised of patient-derived xenografts (PDXs) and in vitro patient-derived cell cultures (PDCs), including mixed cell populations, clonal cell lines, and fibroblast cell lines, to serve as a resource for public-private partnerships and for academic drug discovery efforts. These PDMs will be clinically-annotated with molecular information available in an easily accessible database and will be available to the extramural community.

- NCI has developed a national repository of Patient-Derived Models (PDM)
 - Patient-derived xenografts (PDX)
 - Patient-derived cell lines (PDC)
 - Patient-derived organoid models (PDOrg)
 - Cancer associated fibroblast cell lines (CAF)
- Models are available to the extramural research community
- All models have clinical and molecular data (WES and RNASeq) in an easily accessible database

https://pdmr.cancer.gov

Genomic Landscape of Altered Genes and Clinically Relevant Biomarkers in NCI PDMR

- TP53, APC, and KRAS are the most mutated genes
- Histology-specific enrichment of mutational signatures were observed
- MSI-high and POLEmutated PDX models had higher TMB values
- Models with BRCA1/2 signatures had high %LOH

Transcriptome Profiles Are Related by Histology and PDX Model Origin

- Pairwise Spearman correlation was conducted on gene expression profiles of PDX samples using normalized count values
- Samples in several common disease types are shown
- White box in the figure indicates samples in the same model
- PDX samples were ordered by their disease types

Frederick National Laboratory for Cancer Research

Confidential

- 822 preclinical models from 775 patients have both WES and RNASeq data
- Multiple levels of evidence indicate genomic aberrations in patient tumors are maintained and propagated during early passages (P0 through P2) of the PDX models
 - Oriver mutations, CNA profiles, transcriptomic profiles, and the associated clinically relevant biomarkers LOH and MSI
- The majority of somatic SNV/indels observed in the patient originator specimen detected in the individual specimens for each model
- The NCI PDMR has established a large repository of preclinical models from diverse solid tumor histologies, including rare cancers, with accompanying clinical, histological, and molecular datasets providing a robust resource for pre-clinical drug development

Blood-Based Comprehensive Genomic Profiling: TSO500 ctDNA Assay

 After assessment of 4 different assay technologies, it was decided to move forward with an Illumina pre-commercial assay

○TSO500ctDNA provided:

- Largest gene panel, 523 cancer relevant genes and all exons sequenced including the large tumor suppressor genes, e.g.BRCA1 & 2 and ATM
- Gene copy amplification, MSI, and TMB are reported
- Tiling of relevant introns in clinically relevant gene translocations
- Work performed under Leidos and NCI CRADA's
- Close collaboration with Illumina assay development and bioinformatic teams

A 10 mL Tube of Blood Contains Very Little ctDNA

- Intended use: Initial use as an <u>Integrated</u> clinical research assay,
- If needs arise move into an <u>Integral</u> predictive or prognostic biomarker assay for trial support
 - Integrated assays have specimens collected during a clinical trial for use in research
 - No results are returned to physician or patient
 - Integral assays are used to enroll, stratify or manage treatment of patients in a clinical trial

LoD80 Established for 3 Variant Types

LOD₈₀: the lowest VAF at which at least 80% of replicates can be detected

Limit of Reporting Thresholds

- SNVs ≥ 0.5% VAF
- Indels ≥ 0.5% VAF
- Translocations ≥1.0% VAF
- \geq 3 supporting reads
- CNVs ≥1.3-fold change

Harrington et al. AMP Annual Meeting 2020 poster TT21

SNV and Indel Molecular Landscape: NSCLC Tissue vs. Blood

- Oncogenic/Likely oncogenic OncoKB SNVs and Indels were identified in 25 patients with matched plasma and tissue
- All pts had somatic alterations in tumor and plasma
- One pt had a sub-clonal EGFR L718Q mutation (VAF = 0.49%) in plasma only
 - TP53 mutations were identified in 64% of pts
- Discordant variants (i.e. tumor+/ plasmaor tumor-/plasma+) were mostly subclonal as inferred from the variant allele frequency (VAF) (not shown).

Karlovich et al. AMP Annual Meeting 2020

 NCI-MPACT: a pilot precision medicine study, MoCha provided a targeted NGS clinical assay

• NCI-MATCH:

- Implemented a 4 clinical laboratory network
- ○Harmonized and analytically validated a central laboratory assay in all 4 labs
- Supported screening of the first 6,000 patients
- Implemented 29 laboratory designated laboratory network
 - Vetted analytical validation and required concordance testing

Pediatric MATCH

Outilized existing central laboratory network and NCI-MATCH clinical assay

MDNet: Laboratory Support for 3 New Precision Medicine Trials

• iMATCH

- Pilot trial will use 2 biomarkers:
 - TMB via harmonized cWES in MoCha and 1 sub-contracted lab
 - Tumor inflammation score (TIS), 2 sub-contracted laboratories working with NanoString

MyeloMATCH; (IDE)

- 3 assays requiring 72-hour turn-around-time
 - Cytogenetics (reflux FISH); sub-contracted
 - Targeted NGS; MoCha and 1 sub-contracted
 - FLOW; 1 sub-contracted lab

COMBO-MATCH

○NCI-MATCH Designated Lab Network (increased to ~40 labs)

Clinical Whole Exome Sequencing (cWES) Assay

- Analytically validated WES assay for iMATCH (TMB Integral assay), Integrated assay for ComboMATCH and ETCTN clinical trials
- ~44 Mb target region
- Higher coverage in the exons of 671 genes for increased sensitivity for SNV/Indels (genes annotated in OncoKB database as oncogenic or likely oncogenic)

Integrated and Exploratory Biomarkers:

- Coverage in intronic regions of actionable fusion genes to identify translocations
- Additional probes (tiled across genome at 1MB intervals) for identifying LOH regions, focal amplifications
- WES data analysis pipeline will also report MSI and HLA Class I typing
- Detection of 7 oncogenic virus family
- Fast turnaround time needed for prospective reporting (<2 weeks)

Correlation of TMB with an Orthogonal Assay

- Correlation study for TMB was performed using Research WES assay as the orthogonal assay
- 91 specimens tested
- TMB is ranging from 0-140 mut/Mb

Precision of cWES TMB

- Precision of TMB values across the reportable range of 5-20 mut/Mb is high (% CV <2.87)
- It is within the acceptance criteria (%CV <20%)

NCI-Myeloid Assay

- Developed under NCI CRADA with Thermo-Fisher
- Sequencing chemistry uses isothermal amplification of targeted DNA/RNA followed by synthesis-based sequencing
- Minimal sample input 30 ng DNA and RNA
- Fully automated workflow:
 - Load a plate of DNA and RNA from patient samples
 - Receive all data for review and a clinical report
 - Faster TAT (1-2 days)

NCI-Myeloid Assay – Version 2 (NMAv2)

		DNA hotspots		
ABL1	ANKRD26	BRAF	CBL	CSF3R
DDX41	DNMT3A	FLT3	GATA2	HRAS
IDH1	IDH2	JAK2	KIT	KRAS
MPL	MYD88	NPM1	NRAS	PPM1D
PTPN11	SETBP1	SF3B1	SMC1A	SMC3
SRSF2	U2AF1	WT1		
DNA Full Gene				
ASXL1	BCOR	CALR	CEBPA	ETV6
EZH2	IKZF1	NF1	PHF6	PRPF8
RB1	RUNX1	SH2B3	STAG2	TET2
TP53	ZRSR2			
RNA Fusion Driver Genes				
ABL1	ALK	BCL2	BRAF	CCND1
CREBBP	EGFR	ETV6	FGFR1	FGFR2
FUS	HMGA2	JAK2	KMT2A	MECOM
			(MLL) +PTDs	
MET	MLLT10	MLLT3	MYBL1	MYH11
NTRK3	NUP214	NUP98	PDGFRA	PDGFRB
RARA	RBM15	RUNX1	TCF3	TFE3
BAALC	MECOM	МҮС	SMC1A	WT1

NMAv2 covers

- \circ 45 DNA genes and 35 fusion driver genes
- Includes 28/30 (93.3%) genes mutated with
 >=3% frequency in AML.
- Includes 36/50 (72%) genes mutated with
 >1% frequency in AML.
- Includes 779 unique fusions reported in AML
- Can detect all genetic alterations needed for
 - $\,\circ\,$ WHO classification of AML, except inv 3
 - NCCN/ELN risk stratification, except inv 3

NMAv2 can detect

- FLT3-ITD up to 120bp
- Alterations in CEBPA

Validation Summary

NMAv2 Performance:

- Specificity: 100%
- Overall sensitivity: 98.9%
 - SNVs: 97.78%
 - Indels: 100%
 - Fusions: 100%
- Reproducibility

○ Mean PPA: 98.33%○ Mean NPA: 100%

LOD

- SNVs: HS <0.06%, Non-HS <2%
 Indels: HS <2%, Non-HS <3%
 ELT2, ITDa: 0.2% for 40bp
- FLT3-ITDs: 0.3% for 40bp
- Fusion: 40 read counts, 0.1% tumor content

LOR: Will report out SNV/Indels >5% VAF, but assay is validated to report

- 1. ≥2.5% for all SNVs
- 2. ≥3% for all indels
- 3. 1% for FLT3-ITD
- ≥100 read counts or two reproducible calls for fusions detected at <100 reads, with exception of the KMT2A-PTD fusion which requires reporting if detected at ≥2000 read counts.

Precision of NMAv2 Assay

Contrived material and leukemia cell lines, sequenced multiple times (>35)

Reference Materials, Quality Control Materials and Diagnostic Harmonization Efforts

- Precision Medicine efforts require Dx assays for cancer patient management
- Difficult to judge accuracy and comparability of these complex assays

MoCha has engaged in:

- Genome in a Bottle; human genome RM (NIST)
- Developed and Implemented Oncology RM (SeraCare CRADA)
- Co-Developed Copy Number RM (NIST)
- Developing ctDNA QCM (FNIH, NIST)
- FOCR TMB Comparability Study
- FOCR HRD Comparability Study
- Contributed to CIMAC genomic assay harmonization effort
- SRS Somatic Reference Samples (based on Genome in a Bottle RM)

- National Clinical Laboratory Network supports Early Treatment Clinical Trial Network
- Serve as expert evaluators of study proposals
- Provide robust analytically validated assays for Pharmacodynamic and Genomic Analysis (PADIS and MoCha)

OMoCha is providing genomic assay support for ETCTN

- •WES
- RNASeq

ctDNA predictive and longitudinal

NCLN Genomic Assay Status

NCI

- Our many subcontractors and collaborators
- Many non-MoCha collaborators within Leidos: FNLCR
- All of the staff at MoCha
 - Chris Karlovich PhD, Associate Director
 - Lily Chen PhD, BioInformatic/Computational Biology
 - Bishu Das PhD, R&D
 - DJ Jiwani MD PhD, CLIA Lab Director/Histology
 - Sean McDermott PhD, Moonshot Biobank

• OPEN TO COMMENTS AND QUESTIONS?

frederick.cancer.gov

The Frederick National Laboratory for Cancer Research is government owned and contractor operated on behalf of the National Cancer Institute.

