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At the center of the galaxy of increasingly
successful cancer immunotherapies
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Understanding the tumor microenvironment
during initiation and growth of tumor
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Metastasis is the cause of >90% of
all cancer deaths

 Successful metastasis requires evasion of
immunity at the secondary site

 The lung is a common site of metastasis for
many cancers

 Vascular architecture has historically
explained cancer’s predisposition to
disseminate to the lung

Hypothesis
Site-specific environmental factors - such as
Oxygen - help establish immunologically
permissive sites for metastasis



How do anti-tumor T cells ‘sense’ Oxygen,
and does this affect their function?

T cells use prolyl hydroxylase domain (PHD)
containing proteins

These dioxygenase”('oz) sensors containing non-
heme-binding iron (Fe) that catalyzes the
hydroxylation of proline residues



PHD proteins hydroxylate proline residues
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The PHD enzyme splits dioxygen into
hydroxylated proline and succinate
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PHD enzymes degrade hypoxia inducible
factor (HIF) — and possibly other proteins -
in the presence of oxygen
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EGLN genes encoding PHD oxygen sensors are
located at three different sites in human genome

PHD1 (EGLN2): 19g13.2
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Studying T cell-intrinsic oxygen sensing required a
triple KO mouse

Does oxygen affect anti-
tumor immunity?

Can oxygen sensing be
manipulated to improve
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Oxygen Sensing by T Cells Establishes an
Immunologically Tolerant Metastatic Niche
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T-cell intrinsic PHD proteins suppress
spontaneous pulmonary inflammation

WT PHD-tKO




T-cell intrinsic PHD proteins do not trigger
spontaneous inflammation in the gut
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CD4* T cells lacking PHD proteins are prone
to produce IFN-y after stimulation
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CD8* T cells lacking PHD proteins are prone

to produce IFN-y after stimulation
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T cell-intrinsic expression of PHD proteins licenses
tumor colonization in the lung but not SQ tissue
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T cell-intrinsic expression of PHD proteins licenses
tumor colonization in the lung but not SQ tissue
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PHD proteins suppress type | responses
against innocuous house dust mite (HDM) Ag
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Summary

. T-cell intrinsic PHD proteins suppress
spontaneous pulmonary inflammation

. CD8* and CD4* T cells lacking PHD proteins
are prone to produce IFN-y after stimulation

. T cell-intrinsic expression of PHD proteins
licenses tumor colonization in the lung but not
SQ tissue

. PHD proteins suppress type | responses
against innocuous house dust mite (HDM) Ag



The Problem
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A Solution

Knockout or drug PHD proteins only in
T cells specific for tumor antigens while
leaving all other T cells intact



DMOG blocks the oxygen sensing
PHD proteins
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Gene set enrichment analysis (GSEA) shows that
DMOG/vehicle induces similar gene expression
changes as PHD-tKO/WT
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Inhibition of PHD proteins with DMOG before
adoptive cell transfer immunotherapy
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Inhibition of PHD proteins with DMOG before
adoptive cell transfer immunotherapy
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Inhibition of PHD proteins with DMOG improves
adoptive cell transfer immunotherapy
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Improved efficacy of DMOG-cultured cells
for established subcutaneous tumors
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Foxp3* iTreg fate specification of human
CD4* T cells cultured with DMOG
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Summary

. DMOG blocks the oxygen sensing PHD
proteins as evidenced by RNA seq and gene
set enrichment analysis (GSEA)

. Inhibition of PHD proteins with DMOG
changes the function and phenotype of T
cells...

. = « « and improves adoptive cell transfer
immunotherapy

. Finally, similar maneuvers can be done with
human CD4* T cells



immune suppressive
hange with progressive growth?

How do tumor

mechanisms ¢




Increased hypoxia accompanies progressive
tumor growth

Hypoxia
PHD function ypo
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The tumor microenvironment is characterized
by a high tissue density of necrosis

' Necrosis
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Severe tumor necrosis is associated
with a poor prognosis
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Necrosis releases intracellular ions into
the extracellular space
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Tumor interstitial fluid (TIF) has an elevated
concentration of extracellular potassium ([K*])
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Cell death correlates with levels of K* in the
extracellular space

Annexin V* cells x 10%/g of tumor
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R Eil, Nature (In Press), Fall, 2016



Background and Experimental Question

1. Human tumors persist and progress
despite infiltration by tumor-specific
effector T cells

2. Mouse and human tumors contain dense
areas of cell necrosis

3. Cell necrosis leads to the release of an
intracellular ion, potassium, into the
extracellular space

4. Do elevated concentrations of
extracellular potassium ([K*]) have any
effect on T cell function?



Elevated [K*] acutely inhibits T cell
effector function
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Hyperkalemia augments checkpoint inhibition
of T cells that may already be in place
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Tumor Interstitial Fluid (TIF)
contains ~ 40 mm of K*

1. Elevated [K*] produces profound
suppression of human and mouse T cell
TCR induced effector function

2. Hyperkalemia produces profound
suppression of T cell receptor-induced
transcripts including IL-2 and IFN-y

3. Tumor associated hyperkalemia
augments checkpoint inhibition of T cells
that may already be in place



Naturally-occurring T cells express low
levels of the potassium ion channel
Kcna3 encoding Kv1.3
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Increased hypoxia accompanies progressive
tumor growth
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Genetically engineering anti-tumor T
cells to over-express the potassium ion
channel Kcnal3
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Kcna3 gene-engineered T cells
make more IFN-y /in vivo
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Anti-tumor T cells over-expressing Kcnal3
have enhanced therapeutic efficacy
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Overall summary

. Tumor cell death creates elevated [K*] in
the tumor microenvironment.

. This local hyperkalemia produces
profound suppression of human and
mouse T cells

. T cells can be gene-engineered for
resistance to hyperkalemia by over-
expressing the [K+] ion transporter Kcna3

. Anti-tumor T cells over-expressing Kcna3
have enhanced therapeutic efficacy



Tumor-induced immunosuppression is complicated
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Composition of a human being

Element Symbol Percentage in
Body
/Oxygen o) 65.0
Carbon C 18.5
Hydrogen H 9.5
Nitrogen N 3.2
Calcium Ca 1.5
hosphorus P 1.0
%’otassium K 0.4
Sulfur S 0.3
Sodium Na 0.2
Chlorine Cl 0.2
Magnesium Mg 0.1

and zinc (Zn).

Trace elements include boron (B), chromium (Cr),
cobalt (Co), copper (Cu), fluorine (F), iodine (1),
iron (Fe), manganese (Mn), molybdenum (Mo),
selenium (Se), silicon (Si), tin (Sn), vanadium (V),

less than 1.0




What is the immunology of the elements
and how can it be used to destroy cancer?
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